
I-Do, You-Learn: Techniques for Unsupervised Procedure Learning using
Egocentric Videos

Thesis submitted in partial fulfillment
of the requirements for the degree of

Master of Science in Computer Science and Engineering by Research

by

Siddhant Bansal
2019900091

siddhant.bansal@research.iiit.ac.in

International Institute of Information Technology
Hyderabad - 500 032, INDIA

February 2023

Copyright © Siddhant Bansal, 2022

All Rights Reserved

International Institute of Information Technology
Hyderabad, India

CERTIFICATE

It is certified that the work contained in this thesis, titled “I-Do, You-Learn: Techniques for Unsuper-
vised Procedure Learning using Egocentric Videos” by Siddhant Bansal, has been carried out under
my supervision and is not submitted elsewhere for a degree.

Date Adviser: Prof. C V Jawahar

Date Adviser: Prof. Chetan Arora

To Sanjay, Seema, and Astha Bansal

Acknowledgments

Wow! What a fantastic journey this has been. A lot has changed from dropping a cold email to
Professor Jawahar to writing this thesis. I began with minimal knowledge of how to do research and
ended up publishing at premier conferences. All of this would not have been possible without the
guidance of excellent mentors I have had throughout. Firstly, I thank Professor C.V. Jawahar for being
an amazing guide throughout the degree. I am grateful for all the opportunities he provided and advised
me through various problems I faced during the journey. Not only did he give numerous lessons on
multiple aspects of research, but he also taught about navigating different aspects of life. Secondly, I
would love to thank Professor Chetan Arora. Though my interaction with Professor Arora was majorly
virtual, I never felt his physical absence. He was always available to answer all the questions/concerns
I had regarding the projects. I am grateful for all our interactions; he made me feel comfortable having
personal and project-related interactions. Finally, I would like to thank Dr. Praveen Krishnan. I worked
with him in my initial years at CVIT and learned many things from him! From how to organise a project
and prepare for weekly updates to keeping track of experiments and interacting with professors and
seniors, he taught me a lot. I am grateful that I got to work with him on my initial projects. This allowed
me to work independently on my later projects. I could not have asked for a better set of mentors for my
master’s. I cherish my interactions with my mentors and remember all the lessons I learned from them.

Before I move further, I would love to go back and acknowledge the person because of who I am
where I am, Dr. Rajesh Thakker. He was the Head of the Department at Vishwakarma Government En-
gineering College, where I did my bachelor’s. I worked with him on the Automatic Garbage Collection
and Detection project for a while. There he encouraged and supported me in exploring various aspects
of computer vision. I still remember the day when he took me to the library and gave me a book on
neural networks! I will always be grateful for his support and faith in me. Thank you for being by my
side! Dr. Thakker even introduced me to Prof. Shanmuganathan Raman, who further helped me expand
my horizon on computer vision and introduced me to various topics. Working in his lab and interacting
with the students there further motivated me to pursue research!

“I cannot even imagine where I would be today were it not for that handful of friends who have given
me a heart full of joy. Let’s face it, friends make life a lot more fun.” – Charles R. Swindoll.

I agree with Swindoll. This journey would have been mundane without friends. I made many friends
at CVIT who were there with me through the different phases of the degree. I appreciate them all and
cherish all the memories we have together. I remember writing my first paper and being confused about

v

vi

various aspects of it. At that time, Rudrabha came and helped me with ideas on adding diagrams and
improving other aspects of writing. I appreciate all the discussions (gossip, too :P) we had about various
aspects of paper writing, subject selection, and countless other things. As COVID started, it took a lot of
work to communicate and collaborate with others on various subjects. During that time, Madhav and I
took on similar subjects and discussed multiple doubts. I remember him sitting on a call for seven hours
on his birthday! Furthermore, I am grateful to have Prajwal and Sindhu as my seniors, who always
answer my endless questions! Speaking of seniors, Avijit has been a fantastic friend and mentor. From
discussions on various critical aspects of life to planning trips together (which are yet to happen xD),
he has been a constant support. Finally, thanks to Seshadri, Rupak, Shubham, Ravi, George, Soumya,
Prafful, Zeeshan, Raghava, and Pranav for being amazing company during various portions of the day.
All the fun, discussions, and gossip we had kept me going during the degree.

CVIT is incomplete without Aradhana, Rohita, Ram, Varun, Ann, and Sony! I appreciate Aradhana’s
help and patience throughout the journey. She has been an invisible pillar of support, from helping with
managing the convoluted ECCV trip to giving me a box of rice to put my wet phone into. Rohita, I
wonder about the amount of patience she has. She used to handle multiple requests from all of us, not
to mention the number of questions I used to ask her. I appreciate all her help while planning the trip to
CVPR and sharing with me when Professor Jawahar comes out of his office :P. I can not thank Ram and
Varun enough for their help and support through the Ego4D project. They have entertained numerous
requests from me and made the project a success for CVIT. Finally, I appreciate the help and support
Ann and Sony provided to us. I appreciate them waiting for me to respond to their emails and provide
helpful feedback.

“If you really want to make a friend, go to someone’s house and eat with him. . . The people who
give you their food give you their heart.” – Cesar Chavez

Yuktahaar has been that “house” for me. I know many people at IIIT hate it, but I have count-
less memories there. More than food, the hall of Yuktahaar has provided me with endless memories,
amazing friends, and many interesting conversations. Yuktahaar is where CVIT, CCNSB, CogSci, and
Earthquake Engineering collaborate. I remember meeting Nidhi there and making fun of her :P. Learn-
ing earthquake engineering from Bharat and Supriya. Understanding the notorious malaria parasite and
how our hands have enzymes from Gayathri. Not to mention, teasing Annapoorni on how slow she
eats (and walks) was fun. Talking to Chirag and getting an undergrad’s perspective of the campus was
interesting. Sharing what is going on in the heart over the dinner and listening to how other’s day was,
is possible only in Yuktahaar.

“In hostel, nights turned into morning, with friends that turn into family” – Anonymous

Cannot disagree with this quote! The time I have had with my friends in the hostel is priceless. I
would love to thank Dhawal, Rodo, Nayan, Prateek, Bhoomendra, and Dhruv for making the hostel feel
like home. These people have always been there with me, from playing Catan till five in the morning to
helping me relax after a paper deadline. I cannot imagine meeting deadlines without the mental comfort
of being around fun people.

vii

Towards the end, I would love to thank my friends outside IIIT who have helped me during various
aspects of the journey. Mukul Khanna has been a fantastic friend who listens to me rant about multiple
stuff and helps me proofread my paper. Similarly, Jehlum Vitasta Pandit has been a constant support
and was there to listen to me when I had to take difficult decisions. Not to mention, she helped with
annotating the dataset proposed in the thesis!

Finally, I would love to thank my amazing family, who have always believed in me. My parents
have been a constant support throughout the journey. From making a Twitter account to follow various
computer vision trends and learning about the paper reviewing process to discussing every meeting I had
in the past three years, my dad has always been there for me. I do not have words to thank him enough
for the support he provides. On the other hand, my mom ensured I was taking care of myself and taking
appropriate breaks while working. Being able to call her anytime and sharing how I felt kept me going.
It goes without saying that their support is why I could finish my master’s. My sister, though jealous
of me travelling to various parts of the world, has always appreciated my work. After LACES, she is
the one who proofreads my papers. Also, all the gossip that she provides brightens the day! Difficult to
convey using words how her calls have helped me achieve this milestone.

As said by Drake, “Sometimes it’s the journey that teaches you a lot about your destination.” My
master’s journey has changed me and made me a different, better person.

Abstract

Consider an autonomous agent capable of observing multiple humans making a pizza and making
one the next time! Motivated to contribute towards creating systems capable of understanding and rea-
soning instructions at the human level, in this thesis, we tackle procedure learning. Procedure learning
involves identifying the key-steps and determining their logical order to perform a task.

The first portion of this thesis focuses on the datasets curated for procedure learning. Existing
datasets commonly consist of third-person videos for learning the procedure, making the manipulated
object small in appearance and often occluded by the actor, leading to significant errors. In contrast, we
observe that videos obtained from first-person (egocentric) wearable cameras provide an unobstructed
and clear view of the action. To this end, for studying procedure learning from egocentric videos, we
propose the EgoProceL dataset. However, procedure learning from egocentric videos is challenging
because the camera view undergoes extreme changes due to the wearer’s head motion and introduces
unrelated frames. Due to this, current state-of-the-art methods’ assumptions that the actions occur at
approximately the same time and are of the same duration do not hold. Instead, we propose to use
the signal provided by the temporal correspondences between key-steps across videos. To this end, we
present a novel self-supervised Correspond and Cut (CnC) framework that identifies and utilizes the
temporal correspondences between the key-steps across multiple videos to learn the procedure. We per-
form experiments on the benchmark ProceL and CrossTask datasets and achieve state-of-the-art results.

In the second portion of the thesis, we look at various approaches to generate the signal for learn-
ing the embedding space. Existing approaches use only one or a couple of videos for this purpose.
However, we argue that it makes key-steps discovery challenging as the algorithms lack an inter-videos
perspective. To this end, we propose an unsupervised Graph-based Procedure Learning (GPL) frame-
work. GPL consists of the novel UnityGraph that represents all the videos of a task as a graph to obtain
both intra-video and inter-videos context. Further, to obtain similar embeddings for the same key-steps,
the embeddings of UnityGraph are updated in an unsupervised manner using the Node2Vec algorithm.
Finally, to identify the key-steps, we cluster the embeddings using KMeans. We test GPL on benchmark
ProceL, CrossTask, and EgoProceL datasets and achieve an average improvement of 2% on third-person
datasets and 3.6% on EgoProceL over the state-of-the-art.

We hope this work motivates future research on procedure learning from egocentric videos. Further-
more, the unsupervised approaches proposed in the thesis will help create scalable systems and drive
future research toward creative solutions.

viii

Contents

Chapter Page

1 Procedure Learning: Motivation, Challenges, and Prior Attempts 1
1.1 What is Procedure Learning? . 3

1.1.1 Why is it Difficult to Learn Procedures? . 3
1.1.2 How is Procedure Learning Different from other Tasks? 3
1.1.3 Contributions . 4

1.2 Previous Attempts to Learn Procedures . 4
1.2.1 Representation Learning for Procedure Learning 5
1.2.2 Multimodal Procedure Learning . 5
1.2.3 Self-Supervised Representation Learning . 5
1.2.4 Learning Key-step Ordering . 5

1.3 Organization of the Thesis . 6

2 The EgoProceL Dataset: Egocentric Videos for Procedure Learning 7
2.1 Existing Datasets for Procedure Learning . 8

2.1.1 Third-Person Procedure Learning Datasets 8
2.1.2 Issues with Third-person Datasets and How to Overcome them 8

2.2 EgoProceL Dataset for Procedure Learning . 10
2.2.1 Collecting EgoProceL’s videos . 11

2.2.1.1 Protocol for selecting videos from existing Egocentric Datasets . . . 11
2.2.1.2 Datasets not included in EgoProceL 11
2.2.1.3 Capturing Novel Tasks . 12

2.2.2 Annotating EgoProceL . 12
2.2.3 Task-level details of EgoProceL . 13

2.2.3.1 Foreground Ratio . 13
2.2.3.2 Missing Key-steps . 15
2.2.3.3 Repeated Key-steps . 15

2.3 Summary . 15

3 Aligning the Videos for Discovering the Procedure . 16
3.1 The Motivation behind Aligning the Videos . 17
3.2 Correspond and Cut framework for Procedure Learning 17

3.2.1 TC3I Loss for Learning the Embeddings . 18
3.2.2 ProCut Module for Learning the Key-steps 19
3.2.3 Determining Order of the Key-steps . 20

3.3 Experiments . 21

ix

x CONTENTS

3.3.1 An Updated Evaluation Protocol . 21
3.3.2 Implementation Details . 22

3.3.2.1 List of Hyper-parameters . 22
3.3.3 Baselines . 22

3.4 Results . 23
3.4.1 Third-person Videos . 23
3.4.2 Egocentric Videos . 24
3.4.3 Egocentric vs. Third-person Videos . 25

3.5 Ablation Study . 26
3.5.1 Effectiveness of the TC3I Loss . 26
3.5.2 Effectiveness of PCM . 27
3.5.3 Selecting the value of K . 28

3.6 Summary . 29

4 Graphs for Procedure Learning . 30
4.1 The Motivation behind Utilizing Graphs . 31
4.2 Graph-based Procedure Learning (GPL) . 32

4.2.1 Representing Videos using UnityGraph . 33
4.2.1.1 Creating UnityGraph’s Nodes and Edges 33
4.2.1.2 Detecting the Background Frames 34

4.2.2 Identifying Key-steps and their Order . 34
4.2.2.1 Updating and Clustering UnityGraph’s Embeddings 34
4.2.2.2 Identifying the Order of Key-steps 35

4.3 Experiments . 35
4.3.1 Evaluation . 35
4.3.2 Implementation Details . 36
4.3.3 Datasets . 37
4.3.4 Baselines . 37

4.4 Results . 38
4.4.1 Third-person Videos . 38
4.4.2 Egocentric Videos . 38
4.4.3 Qualitative Analysis . 39

4.5 Ablation Study . 41
4.5.1 Creating UnityGraph . 41
4.5.2 Learning and Clustering the Embeddings . 42
4.5.3 Number of Key-steps and Background Frames 44
4.5.4 Number of Videos for Creating UnityGraph 45

4.6 Summary . 46

5 Conclusion . 47

Bibliography . 50

List of Figures

Figure Page

1.1 Procedure Learning involves identifying the key-step and their order from multiple
videos of the same task. Here, in the input, we have n videos (V1, V2, . . . , Vn) of subjects
preparing a sandwich. The output is (a) frames (from all the videos) assigned to their
respective key-step and (b) order of the key-steps. 2

2.1 EgoProceL is a large-scale dataset for procedure learning. It consists of 62 hours of
egocentric videos recorded by 130 subjects performing 16 tasks for procedure learn-
ing. EgoProceL contains videos and key-step annotations for multiple tasks from CMU-
MMAC [12], EGTEA Gaze+ [51], and individual tasks like toy-bike assembly [62], tent
assembly [36], PC assembly, and PC disassembly. 7

2.2 Issues with standard datasets for procedure learning. Existing datasets [2,20,42,55,
73,85,86] majorly consist of third-person videos. They contain issues like occlusion and
atypical camera locations that make them ill-suited for procedure learning. Additionally,
the datasets rely on noisy videos from YouTube [2,20,55,73,86]. In contrast, we propose
to use egocentric videos that overcome the issues posed by third-person videos. 9

2.3 Example key-step annotations in EgoProceL for making turkey sandwich [51] and
assembling a PC. 10

2.4 Example videos in EgoProceL. Here, we show frames from five different tasks in Ego-
ProceL. The tasks include assembling a tent [36], preparing an omelette [12], assem-
bling a toy bike [62], preparing pasta [51], and assembling a personal computer. In
EgoProceL, we provide key-step annotations for eligible existing egocentric datasets
(Section 2.2.1) and provide additional tasks (PC Assembly and PC Disassembly). . . . 13

3.1 Existence of Correspondences across the Videos. The left-hand side figure shows
six key-steps required to prepare a turkey sandwich across four egocentric videos. The
arrows among the videos highlight the change in the ordering of corresponding key-
steps. This thesis utilizes these correspondences and aims to learn an embedding space
where the corresponding key-steps have similar embeddings (right-hand side figure).
To this end, we propose the Correspond and Cut (CnC) framework, which learns the
embedding space and utilizes it to localize the key-steps and identify their ordering. . . 16

xi

xii LIST OF FIGURES

3.2 Correspond and Cut (CnC) framework for Procedure Learning. CnC takes in mul-
tiple videos from the same task and passes them through the embedder network trained
using the proposed TC3I loss. The goal of the embedder network is to learn similar
embeddings for corresponding key-steps from multiple videos and for temporally close
frames. The ProCut Module (PCM) localizes the key-steps required for performing the
task. PCM converts the clustering problem to a multi-label graph cut problem solved
using the Alpha Expansion algorithm [5]. The output provides the assignment of frames
to the respective key-steps and their ordering. 18

3.3 ProCut Module (PCM). Non-terminal nodes in the graph represent the embeddings of
the frames. Terminal nodes represent the key-steps required to perform the task. The
terminal and non-terminal nodes are connected using the t-links. Non-terminal nodes
are connected using the n-links. The numbers inscribed in arrows represent the cost of
using the respective link. Costs highlighted in green represent the lowest cost to assign
a frame to the key-step. For brevity, n-links are shown only for the first non-terminal
node. Diagram best viewed in colour. 20

3.4 Qualitative results for MECCANO and PC Assembly highlight the effectiveness of
CnC. Additionally, PCM outperforms HC and SS when clustering the key-steps. Fur-
thermore, due to the TC3I loss, CnC correctly identifies the key-steps that are short (fix
a hard disk in PC Assembly). The gray segments denote the background. 25

4.1 UnityGraph for three pizza making videos. UnityGraph facilitates procedure learning
by creating a unified representation of an arbitrary number of videos from the same
category. Here, the nodes represent a clip from the video. Further, the temporal edges
connect temporally close frames, allowing intra-video context, whereas the spatial edges
connect semantically similar frames across the videos, enabling inter-videos context. . 30

4.2 Graph-based Procedure Learning (GPL) framework. Given multiple videos of the
same task, we create UnityGraph. Using the Node2Vec algorithm, we exploit the struc-
ture of UnityGraph to enhance the node embeddings in an unsupervised manner. For
example, the temporal and spatial clips that were originally far in the embedding space
are closer after Node2Vec (highlighted in blue). Finally, we cluster the embeddings us-
ing KMeans and filter the background frames to obtain the key-steps required to perform
the task. 32

4.3 Creating UnityGraph’s Nodes and Edges. a) Given window size (ψ), stride (ω), and
sampling rate (σ), a clip from a video is passed through a pre-trained I3D ResNet-50 to
generate the node’s embedding. b) We consider nodes from three videos (V1, V2, V3).
For brevity, we show the similarity scores between v12 and all the nodes in V1 and V3.
Edges with the highest semantic similarity (marked in green) are retained. 33

4.4 Detecting the Background Frames. We use the hand-object detection model from [67].
a) Frames not containing hand-object interaction. Second image in the first row contains
a hand without an interaction with an object, hence, background. b) Frames containing
hand-object interaction and contribute towards understanding the procedure. 35

LIST OF FIGURES xiii

4.5 Qualitative Results for one video each of Bike and PC Assembly. Each color for a task
denotes one key-step and gray sections are the background. The first row contains the
ground truth label, the second row contains the results obtained by randomly predict-
ing the key-steps, the third row shows results obtained using CnC [3], the fourth row
highlights the results using UnityGraph’s node generated using I3D ResNet-50, and the
last row shows results obtained for the GPL framework. As can be seen, the segments
obtained from GPL are more coherent upon using Node2Vec to update UnityGraph’s
embeddings. This highlights the efficacy of both, UnityGraph and Node2Vec. 39

4.6 t-SNE [76] visualisation for the task of making a sandwich [3, 12] before and after
updating UnityGraph’s embeddings using the Node2Vec algorithm [27]. Here, each
color represents a key-step’s category, as noted in the legend. The left side of the figure
consists of t-SNE visualisation obtained before using the Node2Vec algorithm. The right
side of the figure consists of t-SNE visualisation obtained after updating UnityGraph’s
embeddings using Node2Vec. As can be seen, upon updating the embeddings using
Node2Vec, clips with similar key-steps come close. For example, the cluster on the
top consists of clips of subjects applying peanut butter, whereas the cluster towards the
centre has background clips of subject moving themselves from one place to other. . . 40

List of Tables

Table Page

2.1 Comparison of datasets for Procedure Learning. The average number of key-steps
and video length for EgoProceL are the highest, highlighting the complexity of the
procedures included in EgoProceL . 11

2.2 Statistics of the EgoProceL dataset across different tasks. The high range of the
foreground ratio and repeated steps highlights the complexity of the tasks involved in
EgoProceL . 14

3.1 Hyper-parameter values for CnC . 22

3.2 Procedure Learning from Third-person Videos. Comparison between state-of-the-
art methods and CnC on benchmark third-person video datasets [20, 86]. Our method
outperforms all the techniques using videos only (in F-Score). It even manages to give
at par performance compared to the techniques using multi-modal input. P, R, and F
represent precision, recall, and F-score, respectively 23

3.3 Procedure Learning Results obtained on EgoProceL. Here, CnC performs the best,
highlighting the effectiveness of the TC3I loss and PCM 24

3.4 Egocentric vs. Third-person results. We use different views from [12] for comparison.
We obtain better results using CnC on egocentric videos highlighting their effectiveness 25

3.5 Effectiveness of the TC3I loss. Here, we replace the TC3I loss in CnC with TCC,
LAV, and a combination of LAV and TCC. For the majority of the cases, the proposed
TC3I loss performs well as it focuses on frame-level correspondences and adds temporal
coherency by adopting the C-IDM loss . 26

3.6 Effectivenss of PCM. Results after replacing PCM with HC and SS with different losses 27

3.7 Selecting K. Results with various values of K. Numbers in bold are highest in the
respective row, and underlined numbers are highest in the respective column 28

4.1 Hyper-parameter values for different components of the GPL framework. Here, “FP”
refers to first-person, “TP” refers to third-person, and “Ablation table” refers to the table
containing quantitative results for the respective hyper-parameter 36

4.2 Procedure Learning from Third-person Videos. Comparison between state-of-the-art
methods and GPL on third-person datasets [20, 86]. 37

xiv

LIST OF TABLES xv

4.3 Results on egocentric view obtained on EgoProceL. Due to higher generalisation ca-
pability and effectively modeling the temporal and spatial relationships, the GPL frame-
work performs the best. This highlight the effectiveness of the video representation
generated using the proposed UnityGraph and Node2Vec for updating the embeddings
based on the node neighborhoods. Note that EgoProceL is a recent dataset for ego-
centric procedure learning, due to this, there is only one approach (CnC [3]) to fairly
compare with. Furthermore, as other methods have been specifically designed around
third-person datasets, we compare with them on those datasets in Table 4.2 38

4.4 Hyper-parameters for creating UnityGraph. Here, the results are obtained upon
changing various parameters for creating UnityGraph. R, and F represent recall, and
F-score, respectively . 41

4.5 Similarity metrics to create UnityGraph’s edges. Here, the results are obtained upon
generating edges by various similarity metrics. R, and F represent recall, and F-score,
respectively . 42

4.6 Hyper-parameters for walks over UnityGraph. Here, we perform multiple walks to
analyse the hyper-parameters for Node2Vec. R, and F represent recall, and F-score,
respectively . 42

4.7 Clustering the embeddings. Here, the results are obtained upon using multiple clus-
tering methods on the learned embeddings. R, and F represent recall, and F-score,
respectively . 43

4.8 Hyper-parameters for learning the embeddings. Here, the results are obtained upon
varying Node2Vec’s parameters. R, and F represent recall, and F-score, respectively . 43

4.9 Tuning K. Here, the results are obtained for various values of K. R, and F represent
recall, and F-score, respectively . 44

4.10 Detecting the background frames. Here, the results are obtained upon filtering the
frames that do not contain hand-object interaction. Results improve for categories with
subjects working in an unrestricted space. R, and F represent recall, and F-score, re-
spectively . 45

4.11 Number of Videos. Here, the results are obtained upon systematically increasing the
number of videos for creating UnityGraph. R, and F represent recall, and F-score,
respectively . 45

Chapter 1

Procedure Learning: Motivation, Challenges, and Prior Attempts

From fabricating a laptop on an assembly line to preparing a pizza, we follow a series of steps to ac-
complish the task. Also, each task requires specific domain knowledge to carry it out. Creating a robotic
agent that augments humans in performing such tasks requires years of research and development. Fur-
thermore, tuning the same agent for a different task is challenging. To overcome these challenges and
create scalable systems, in this thesis, we aim to devise frameworks capable of “watching” human sub-
jects perform a task and learn from it.

Creating a framework capable of learning from a few human demonstrations has various advantages.
For example,

1. Such frameworks are scalable and capable of learning multiple tasks (e.g., the same framework
can learn to assemble a PC and make a brownie!).

2. They are efficient. Instead of requiring years of research, such systems can be trained in hours.

3. Owing to the scalability and efficiency of such systems, they can be deployed on various devices,
opening up a world of exciting applications.

Furthermore, such frameworks would be helpful for various applications, like,

1. Automated Systems: Such systems can enable robotic systems to autonomously learn the steps
for performing the task by observing the task being performed. Once the automated system learns
the steps, the next time, it can do the task without human assistance.

2. Monitoring Procedures: Consider a system trained to know the key-steps for performing a task;
if a new person does the same task again, the system will identify if the person misses a step or
does a step differently.

3. Guidance Systems: A system trained to know the key-steps for performing a task can identify
the current step and show the next possible step for performing the task.

To create frameworks capable of learning from a few human demonstrations and high applicability,
in this thesis, we focus on procedure learning.

1

Procedure Learning

Spread the
dough Apply sauce Grate and

add cheese

Cut and add
pepperoni

Put pizza in
the oven

Algorithm to discover the key-steps
and their order

Key-steps
 to prepare

 a pizza

Cluster of
 frames assigned

 to key-steps

videos
of subjects

making a
pizza

Figure 1.1 Procedure Learning involves identifying the key-step and their order from multiple videos

of the same task. Here, in the input, we have n videos (V1, V2, . . . , Vn) of subjects preparing a sandwich.

The output is (a) frames (from all the videos) assigned to their respective key-step and (b) order of the

key-steps.

2

1.1 What is Procedure Learning?

As shown in Figure 1.1, given a set of instructional videos for the same task, procedure learning [19,
20, 68] broadly consists of two steps,

1. assigning all the frames to the K key-steps (including the background), and

2. discovering the logical ordering of the key-steps required to perform the task.

Formally, we consider n untrimmed videos of the same task, denoted by V = {Vi : i ∈ N, 1 ≤ i ≤
n}. Each of the n videos can have a different number of frames. A video Vk with m frames is denoted
as Vk = {f1k , f2k , . . . , fmk }. The goal is to define a framework f(θ) (with learnable parameters θ) that
takes in the n videos and classifies all the n×m (m can vary with video) intoK key-step clusters. Also,
we aim to determine the order of K clusters.

Note that we aim to solve the task in an unsupervised/self-supervised manner. Due to this, we do not
utilise the labels in our frameworks. The labels are only used during evaluation (refer to Section 3.3.1).

1.1.1 Why is it Difficult to Learn Procedures?

In this thesis, we aim to create systems capable of understanding and reasoning instructions at the
human level. For example, as shown in Figure 1.1, the instructions to prepare a pizza are at human
level (referred to as key-steps in the thesis). In contrast, computer vision tasks, like action segmentation,
approach at a finer level of actions [14, 35, 64, 73] (Section 1.1.2). However, as we show in qualitative
analysis in Chapter 3 and Chapter 4, segmenting at human level is challenging. This is mainly because,
along with the actions required to perform a task, there are actions that are not the key-steps but may
supplement the key-step (for example, taking out butter from the shelf).

Furthermore, due to the definition of the key-steps, a major portion of procedure learning datasets
consists of background actions [3, 20, 86]. This not only makes learning procedures challenging but
also makes evaluating the learned procedure problematic. For example, when evaluating using F1-
Score [19, 20, 44, 68, 77], a model that assigns all the frames to the background, will score high. To fix
the issue, in this thesis, we propose an updated evaluation protocol described in Section 3.3.1.

1.1.2 How is Procedure Learning Different from other Tasks?

As shown in Figure 1.1, procedure learning deals with multiple videos of a task. In contrast, action-
based tasks deal with a single video [14, 35, 64, 73], hence losing the capability to determine repetitive
key-steps across the videos. Secondly, these tasks do not consider the order of the individual events,
which is often crucial for identifying key-steps, and/or procedures/recipes. For example, action-based
tasks do not capture the difference in the order of key-steps.

Procedure Segmentation [37], on the other hand, deals with dividing a single video into procedure-
level segments. Instead, procedure learning deals with generating segments across multiple videos.

3

Furthermore, similar to action-based tasks, procedure segmentation does not deal with the ordering of
the key-steps. Also, as procedure learning deals with localising the key-steps, it differs from the video
alignment task. Therefore, considering the utility of procedure learning and its distinctness from existing
tasks, we aim to solve it.

1.1.3 Contributions

As mentioned in the previous sections, this thesis deals with procedure learning and aims to solve its
challenges. To this end, the following are our core contributions:

1. To facilitate procedure learning from egocentric videos, we create the EgoProceL dataset. The
dataset consists of 62 hours of egocentric videos captured by 130 subjects performing 16 tasks.

2. We propose two novel methods to solve procedure learning in an unsupervised manner. The
first method deals with utilizing video alignment approaches whereas, the second method exploit
graphs for procedure learning.

3. In the first work, we propose the Correspond and Cut (CnC) framework, which utilizes the pro-
posed TC3I loss and PCM to identify the key-steps and their ordering required to perform a
task. Furthermore, we investigate the usefulness of egocentric videos over third-person videos for
procedure learning. We observe an average improvement of 2.7% in the F1-Score when using
egocentric videos instead of third-person videos.

4. In the second work, we propose the Graph-based Procedure Learning (GPL) framework. Contrary
to existing graph-based frameworks, GPL does not require node or edge annotations, enabling
unsupervised procedure learning. Furthermore, we create a novel graph representation for arbi-
trary number of videos: UnityGraph. UnityGraph captures (a) temporal relationships in the same
video and (b) semantic relationships across the videos. Also, to identify the background frames,
we propose to detect hand-object interactions in egocentric videos. This leads to an improvement
of 1.1% in the F1-Score on EgoProceL.

5. To evaluate both the proposed approaches, we perform experiments and ablation on two third-
person datasets (ProceL [20] and CrossTask [86]) and the proposed EgoProceL dataset.

1.2 Previous Attempts to Learn Procedures

In this section, we have a look at various prior attempts at procedure learning, representation learning,
and key-step ordering.

4

1.2.1 Representation Learning for Procedure Learning

Previous works on procedure learning have developed methods to learn frame-level features [19, 20,
44,77]. Kukleva et al. [44] learn the representation space by using relative timestamps of the frames. On
the other hand, Vidal et al. [77] predict the future frame and its timestamps. Elhamifar et al. [19] learn
and employ attention features for individual frames. Bansal et al. [3] exploit temporal correspondences
across the videos to generate the signal and learn frame-level embeddings. However, these methods fall
short in modelling either temporal or spatial relationships.

1.2.2 Multimodal Procedure Learning

Another class of methods works with multi-modal data, like narrated text and videos [2,11,16,24,54,
66, 68, 84, 87]. These works use Automatic Speech Recognition (ASR) to obtain the text, which is not
perfect. Due to this, the output needs to be manually cleaned, which is not scalable. Additionally, such
methods assume an alignment between the text and videos [2, 54, 84], which might not be accurate for
most cases [19, 20]. Instead, we use only the visual modality as an input to the framework. Due to this,
we eliminate the need to obtain narrations that might be inaccurate and make our framework scalable.

1.2.3 Self-Supervised Representation Learning

Learning a representation space without annotations saves substantial time and energy when creating
deep learning solutions. Motivated by this, recent works explore various pretext tasks to generate super-
vision signals for training deep learning architectures [7,31,74,75,80]. A few pretext tasks for learning
image representations include image colourization [45,46], object counting [52,59], solving jigsaw puz-
zles [6, 39], predicting image rotations [22, 41], and reconstructing input images [32] from noise [78].
Pretext tasks for learning video representations include predicting future frames [1, 13, 29, 38, 72, 79],
using temporal order and coherence as labels [23, 47, 56, 82, 83] and predicting the arrow of time [81].

Video representation learning methods mentioned above employ a single video. However, we want
to identify similar key-steps in multiple videos for procedure learning.

1.2.4 Learning Key-step Ordering

A majority of the previous works do not capture different key-step ordering to perform the same
task. They either assume a strict ordering [20, 44, 77] or do not predict the order [19, 68]. However, we
observe that subjects perform the same task in multiple ways, motivating us to capture different ways to
accomplish the task.

5

1.3 Organization of the Thesis

The rest of the thesis is organised as follows:

1. In Chapter 2, we summarise existing procedure learning datasets and discuss their shortcomings.
Furthermore, we propose the EgoProceL dataset consisting of egocentric videos for procedure
learning.

2. In Chapter 3, we demonstrate the existence of correspondences across the videos and outline the
proposed Correspond and Cut (CnC) framework to exploit them for procedure learning. Further-
more, we evaluate CnC on existing third-person and proposed EgoProceL dataset.

3. In Chapter 4, we explore the utility of graphs for procedure learning. We propose the Graph-
based Procedure Learning (GPL) framework for procedure learning and evaluate it on third- and
first-person datasets.

6

Chapter 2

The EgoProceL Dataset: Egocentric Videos for Procedure Learning

Figure 2.1 EgoProceL is a large-scale dataset for procedure learning. It consists of 62 hours of ego-

centric videos recorded by 130 subjects performing 16 tasks for procedure learning. EgoProceL con-

tains videos and key-step annotations for multiple tasks from CMU-MMAC [12], EGTEA Gaze+ [51],

and individual tasks like toy-bike assembly [62], tent assembly [36], PC assembly, and PC disassembly.

In this chapter, we first have a look at existing third-person procedure learning datasets and dis-
cuss their shortcomings (Section 2.1). Eventually, in Section 2.2, we propose the EgoProceL dataset
(Figure 2.1) to overcome the shortcomings.

7

2.1 Existing Datasets for Procedure Learning

In Section 2.1.1, we first summarise significant procedure learning datasets. Later, in Section 2.1.2,
we highlight the shortcomings of existing datasets.

2.1.1 Third-Person Procedure Learning Datasets

As discussed in Section 1.2, a variety of attempts have been made for procedure learning. A majority
of the works propose and utilise third-person video datasets for the task. The most significant datasets
are:

1. ProceL [20]: It consists of 47.3 hours of videos from 12 diverse tasks. The tasks range from tying
a tie and assembling clarinet to setting up a Chromecast. Each task has 60 videos collected from
YouTube and the grammar of key-steps is created by the annotators.

2. CrossTask [86]: It contains 375 hours of videos collected from YouTube for 83 tasks. The dataset
is further divided into two parts, 18 primary and 65 related tasks. Videos for the primary tasks
have been acquired manually and contain the temporal step annotations necessary for evaluating
procedure learning models. The primary tasks contain tasks ranging from cooking to auto repair
to building floating shelves. On the other hand, videos for related tasks are gathered automatically
and do not contain annotations. Due to this, unless otherwise mentioned, we refer to the primary
dataset as CrossTask.

3. Breakfast [42]: This “in-the-wild” dataset consists of 77 hours of videos recorded by 52 unique
participants in 18 different kitchens. The dataset provides coarse-level annotations for all the
tasks. It consists of various cooking activities like preparation of coffee, orange juice, chocolate
milk, etc.

4. Inria [2]: It consists of approximately 5 hours of videos of 5 tasks collected from YouTube. The
tasks range from changing a tire to re-potting a plant. YouTube’s Automatic Speech Recognition
(ASR) is used to obtain transcripts for the videos. To facilitate evaluation, the dataset consists of
temporal annotations of the main steps required to perform a task.

2.1.2 Issues with Third-person Datasets and How to Overcome them

As discussed in Section 2.1.1, existing instructional videos datasets [2, 20, 37, 42, 55, 73, 85, 86]
majorly consist of third-person videos. Here, as shown in Figure 2.2, the camera is kept far from the
expert to avoid interference in the actual task. Due to this, the manipulated objects are typically small or
sometimes invisible. Additionally, third-person videos can be captured from various positions, leading
to wide variations in the camera viewpoints for the same task [12]. Further, as shown in Figure 2.2, most
datasets comprise videos scraped from the internet (YouTube) [2,20,37,55,73,86], which are noisy and

8

Third-person view (occlusion)

Noisy YouTube Videos

Third-person view (atypical camera locations)

Egocentric view

Figure 2.2 Issues with standard datasets for procedure learning. Existing datasets [2, 20, 42, 55, 73,

85, 86] majorly consist of third-person videos. They contain issues like occlusion and atypical camera

locations that make them ill-suited for procedure learning. Additionally, the datasets rely on noisy

videos from YouTube [2, 20, 55, 73, 86]. In contrast, we propose to use egocentric videos that overcome

the issues posed by third-person videos.

9

Chop vegetables Take bread Add turkey Add vegetables Add cheese Garnish

Fix Motherboard Fix CPU Fix CPU FanFix Hard Disk

Fix RAMFix SMPS

Fix Cabinet Fan

Plug the WiresPlace the cabinet cover

Figure 2.3 Example key-step annotations in EgoProceL for making turkey sandwich [51] and assem-

bling a PC.

have large irrelevant segments. In contrast, egocentric cameras are typically harnessed to the subject’s
head and have a standardized location. They provide a clearer view of the executed task, including
the manipulated objects. As a result, recent works have introduced datasets consisting of egocentric
videos [10, 21, 36, 51, 61, 69], which have proven helpful for various tasks [25, 34, 50, 58, 70].

2.2 EgoProceL Dataset for Procedure Learning

Motivated by the advantages of egocentric videos over third-person videos (Section 2.1.2), we pro-
pose an egocentric videos dataset for procedure learning: EgoProceL. EgoProceL contains videos and
key-step annotations for multiple tasks from CMU-MMAC [12] and EGTEA Gaze+ [51] and individual
tasks like toy-bike assembly [62], tent assembly [36], PC assembly, and PC disassembly. EgoProceL
consists of 62 hours of annotated egocentric videos, including 16 tasks with an average duration of 13
minutes. To annotate the videos for key-steps, we create a list of key-steps for each task, e.g., assembling
a PC requires, ‘Fix motherboard’, ‘Fix hard disk’, ..., ‘Place the cabinet cover’. We use ELAN [71] to
annotate each video by marking the start and end location during which the key-step occurs.

Along with various procedure learning tasks, EgoProceL is appropriate for understanding hand-
object interaction, action forecasting and recognition, and a shared study of videos and text. Figure 2.3
shows some example annotations and Table 2.1 compares EgoProceL with existing datasets.

In this section, we first discuss how the videos for EgoProceL were gathered (Section 2.2.1). This is
followed by a discussion of the annotation protocols followed (Section 2.2.2). Finally, in Section 2.2.3,
we share various statistics for EgoProceL highlighting multiple challenges that the dataset offers.

10

Table 2.1 Comparison of datasets for Procedure Learning. The average number of key-steps and

video length for EgoProceL are the highest, highlighting the complexity of the procedures included in

EgoProceL

Dataset Egocentric View Manually Created Avg. key-steps Avg. Video Length (sec) #tasks

Breakfast [42] 7 3 5.1 137.5 10

Inria [2] 7 7 7.1 178.8 5

ProceL [20] 7 7 8.3 251.5 12

CrossTask [86] 7 7 7.4 297 18

EgoProceL (ours) 3 3 8.7 769.2 16

2.2.1 Collecting EgoProceL’s videos

2.2.1.1 Protocol for selecting videos from existing Egocentric Datasets

The EgoProceL dataset focuses on the key-steps required to perform a task instead of every action in
the video. To construct EgoProceL, we take two approaches: (a) identifying publicly available datasets
that we annotate for key-steps; (b) recording new tasks to expand the range of tasks. We follow the
following criteria to shortlist from the public datasets:

1. The task should require multiple key-steps to perform. For example, preparing a sandwich in-
volves a minimum of four key-steps [12].

2. Videos of the same task must contain a similar set of key-steps. However, the order of the key-
steps can differ.

3. To compare the performance of Correspond and Cut framework proposed in Section 3.2 on ego-
centric and third-person views, we require a dataset with recordings of the same task in both
views.

4. We prefer longer videos with sparse key-steps to generate practical solutions.

We select CMU-MMAC [12], EGTEA Gaze+ [51], MECCANO [62], and EPIC-Tents [36] based
on the above criteria. CMU-MMAC contains recordings of subjects performing the same task from
one egocentric and four third-person views. Therefore, by using it, we compare the performance of the
proposed approach between egocentric and third-person views.

2.2.1.2 Datasets not included in EgoProceL

Here we discuss two potential datasets which we could not use for EgoProceL.

11

1. The Charades-Ego dataset [69], consisting of paired egocentric and third-person videos, is es-
sential for activity recognition. However, it is not practical for procedure learning. The subjects
do not perform a series of key-steps to achieve a goal; instead, they perform activities like pouring
a drink into a cup and having it. Additionally, the average duration of the videos is 31.2 seconds
compared to 13 minutes in EgoProceL, suggesting the briefness of the tasks acted out.

2. The EPIC-Kitchens dataset [10], consisting of 100 hours of kitchen recordings, comes quite
close to our requirements. However, due to the unscripted nature of the dataset (which sets it
apart from [51]), it becomes unsuitable. As for procedure learning, we need videos of the same
tasks performed multiple times.

2.2.1.3 Capturing Novel Tasks

Though the four datasets selected above include a diverse range of tasks, they do not contain tasks
where the subject works in a constrained environment and deals with small objects (e.g., screws). To
alleviate this, we include manually recorded videos of assembling and disassembling a Personal Com-
puter (PC). This addition makes the dataset diverse and challenging in terms of variability in the size of
objects involved and the complexity of key-steps (e.g., fixing the motherboard requires fastening nine
screws). Furthermore, as highlighted in Section 2.2.3, these two tasks contain the highest foreground
ratio. In Figure 2.4, we show example videos from five tasks in EgoProceL (including existing and
novel egocentric videos).

2.2.2 Annotating EgoProceL

For annotating CMU-MMAC [12], EPIC-Tents [36], MECCANO [62], PC Assembly, and PC Dis-
assembly, a list of key-steps required to perform the task was created upon viewing the videos. Two
annotators were asked to identify the key-steps in the videos and temporally mark the start and end
locations. Once an annotator added temporal segments to the videos, the other annotator verified them.
We use the ELAN software [71] to annotate the videos.

For annotating EGTEA Gaze+ [51], we used the recipes provided by the dataset curators to create
the key-step’s list for each task. The dataset offers dense activity annotations for all the videos. We
created a one-to-many mapping between the key-steps and the provided annotations; this accelerated
the annotations process. The mapping generated was used to create key-step annotations for all videos.
Three people further watched the videos and verified the annotations generated.

Figure 2.3 shows example annotations for making a turkey sandwich [51] and assembling a PC. To
accelerate future research, we release the EgoProceL dataset on the project’s web page1.

1Link 1: http://cvit.iiit.ac.in/research/projects/cvit-projects/egoprocel; Mirror link 2: https://sid2697.github.io/

12

http://cvit.iiit.ac.in/research/projects/cvit-projects/egoprocel
https://sid2697.github.io/

Figure 2.4 Example videos in EgoProceL. Here, we show frames from five different tasks in EgoPro-

ceL. The tasks include assembling a tent [36], preparing an omelette [12], assembling a toy bike [62],

preparing pasta [51], and assembling a personal computer. In EgoProceL, we provide key-step annota-

tions for eligible existing egocentric datasets (Section 2.2.1) and provide additional tasks (PC Assembly

and PC Disassembly).

2.2.3 Task-level details of EgoProceL

In Table 2.2, we share the statistics for each of the 16 tasks in the EgoProceL dataset. Here, N is the
number of videos, K is the number of key-steps for a task, un is the number of unique key-steps and gn
is the number of annotated key-steps for nth video. We follow [20] to calculate the following statistics.

2.2.3.1 Foreground Ratio

It is the ratio of total duration of the key-steps to the total duration of the video. This helps to
understand the amount of background actions a task has. The foreground ratio is inversely proportional
to the amount of background. It is calculated as:

F =

∑N
n=1

tnk
tnv

N
(2.1)

Here, tnk and tnv are the key-step duration and video duration for nth video, respectively. The range
of F is between 0 and 1.

From Table 2.2, we can see that the tasks have significant variance in the foreground ratio. Con-
versely, tasks like “PC Assembly” and “Tent Assembly” have a high foreground ratio, suggesting fewer

13

Table 2.2 Statistics of the EgoProceL dataset across different tasks. The high range of the foreground

ratio and repeated steps highlights the complexity of the tasks involved in EgoProceL

Task Videos

Count

Key-steps

Count

Foreground

Ratio

Missing

Key-steps

Repeated

Key-steps

PC Assembly 14 9 0.79 0.02 0.65

PC Disassembly 15 9 0.72 0.00 0.60

Toy Bike Assembly 20 17 0.50 0.06 0.32

Tent Assembly 29 12 0.63 0.14 0.73

Bacon and Eggs 16 11 0.15 0.22 0.51

Cheese Burger 10 10 0.22 0.22 0.65

Continental Breakfast 12 10 0.23 0.20 0.36

Greek Salad 10 4 0.25 0.18 0.77

Pasta Salad 19 8 0.25 0.19 0.86

Hot Dog Pizza 6 8 0.31 0.13 0.62

Turkey Sandwich 13 6 0.21 0.01 0.52

Brownie 34 9 0.44 0.19 0.26

Eggs 33 8 0.26 0.05 0.26

Pepperoni Pizza 33 5 0.53 0.00 0.26

Salad 34 9 0.32 0.30 0.14

Sandwich 31 4 0.25 0.03 0.37

14

background actions. On the other hand, tasks like preparing “Bacon and Eggs” and “Turkey Sanwich”
have low foreground ratios, suggesting more background actions.

2.2.3.2 Missing Key-steps

This measure captures the count of missed key-steps in each video. It is defined as:

M = 1−
∑N

n=1 un
KN

(2.2)

The range of M is between 0 and 1. It helps us understand if a task can be done even if we miss some
steps. For example, in Table 2.2, “Salad” has the highest missing key-steps ratio suggesting that salad
can be made if we miss multiple key-steps. This makes sense, as one can miss adding mayonnaise to the
salad but still create an edible salad. On the other hand, tasks like “PC Disassembly” and “Pepperoni
Pizza” can not afford to miss key-steps as the task won’t be complete. So, for such tasks, we see a
missing key-step ratio of 0.

2.2.3.3 Repeated Key-steps

This measure captures the repetitions of key-steps across the videos. It is defined as:

R = 1−
∑N

n=1 un∑N
n=1 gn

(2.3)

The range of R is between 0 and 1. Higher values of R indicate repetitions of key-steps across videos.
From Table 2.2, we can see preparing “Pasta Salad” has the highest repeated key-steps and preparing
“salad” has the lowest. Methods that do not consider repetitions of the key steps will not perform well
for such tasks. As UnityGraph takes repetitions of the key steps into consideration, it performs well.

2.3 Summary

To conclude, in this chapter, we first discuss existing datasets for procedure learning and then look
at their shortcomings. To fix the shortcomings, we propose the EgoProceL dataset. For EgoProceL, we
have a look at the protocols followed in selecting and annotating the videos. Finally, we have a look at
various statistics to highlight multiple aspects of the proposed EgoProceL dataset. In the next chapter,
we propose a framework that exploits the correspondences across videos of the same task to learn the
procedure.

15

Chapter 3

Aligning the Videos for Discovering the Procedure

Embedding Space

1. Chop
vegetables

2. Take
bread

3. Add
turkey

4. Add
vegetables

5. Add
cheese 6. Garnish

Key-steps required to prepare a turkey sandwichC
or

re
sp

on
di

ng
 k

ey
-s

te
ps

 in
 m

ul
tip

le
 v

id
eo

s

2. Take bread

1. Chop vegetables

4. Add
vegetables

5. Add cheese

6. Garnish3. Add turkey

Figure 3.1 Existence of Correspondences across the Videos. The left-hand side figure shows six

key-steps required to prepare a turkey sandwich across four egocentric videos. The arrows among

the videos highlight the change in the ordering of corresponding key-steps. This thesis utilizes these

correspondences and aims to learn an embedding space where the corresponding key-steps have similar

embeddings (right-hand side figure). To this end, we propose the Correspond and Cut (CnC) framework,

which learns the embedding space and utilizes it to localize the key-steps and identify their ordering.

In this chapter, we have a detailed look at the proposed Correspond and Cut (CnC) framework for
procedure learning (Section 3.2). Also, we compare the proposed CnC framework with state-of-the-
art methods on third-person datasets (Section 3.4.1). Furthermore, we evaluate CnC on the proposed
EgoProceL dataset (Section 3.4.2). Finally, we compare the performance of CnC on different camera
views (Section 3.4.3), and also we perform an extensive ablation study (Section 3.5).

16

3.1 The Motivation behind Aligning the Videos

Imagine showing an autonomous agent how to prepare a sandwich, and it learns the steps required
for it! Motivated by this vision, this chapter focuses on developing a framework that allows an agent to
identify the steps required to perform a task and their order after observing multiple visual demonstra-
tions by experts. Furthermore, due to the high utility of egocentric videos, we explore procedure learning
using the proposed EgoProceL dataset (Chapter 2). However, egocentric videos come with their own set
of challenges. For example, the camera view undergoes extreme movements due to the wearer’s head
motion, introducing frames unrelated to the activity and unavailability of the actor’s pose [70].

To overcome the challenges and learn the procedure from egocentric videos, we propose utilizing the
signal provided by temporal correspondences across videos. As shown in Figure 3.1, critical moments
like putting a slice of turkey on the bread while preparing a turkey sandwich are present across all the
videos. To exploit the signal provided by such temporal correspondences, we propose a self-supervised,
three-stage, Correspond and Cut (CnC) framework for procedure learning. The first stage of the CnC
uses the proposed self-supervised TC3I loss to learn an embedding space such that the same key-steps
across the videos have similar embeddings (Figure 3.1). The second stage consists of the proposed
ProCut Module (PCM). PCM performs clustering on the learned embeddings and assigns each frame
to a key-step. The final stage of CnC creates a key-step sequence for each video and infers relevant
ordering to perform the task.

3.2 Correspond and Cut framework for Procedure Learning

Humans often follow the same steps to perform any particular task, though the order of steps might
be different. This thesis proposes a methodology that, given a set of videos of humans performing a
task, learns similar embeddings across videos for the key-steps required to complete a task. Once we
have the embeddings, learning a procedure reduces to clustering the embeddings for localizing the key-
steps among all the videos. To learn the embeddings, we exploit temporal correspondences between the
videos of the same task. For that purpose, we train a representation learning network using the proposed
TC3I loss (Section 3.2.1). TC3I builds on top of existing temporal video alignment methods [18, 30].
After learning the embeddings, we use PCM, shown in Figure 3.2, to cluster and localize the underlying
key-steps. PCM models the clustering problem as a multi-label graph cut problem and solves it to
localize the key-steps (Section 3.2.2). Once we localize the key-steps using PCM, we use the frame’s
relative location in a video to generate the key-step ordering for each video (Section 3.2.3).

Notation: CnC takes in V = {Vi : i ∈ N, 1 ≤ i ≤ n} untrimmed videos of the same task, where n
is the total number of videos. Each of the n videos can have a different number of frames. We denote
the embedding function used to generate the frame-level embeddings as fθ, which is a neural network
with parameters θ. A video Vk with m frames is denoted as Vk = {f1k , f2k , . . . , fmk } and the video’s

17

Key-step
5

Key-step
4

Key-step
3

Key-step
2

Key-step
1

Embedder
Network

Embedding Space learned using
TC3I Loss

ProCut Module (PCM)

Key-step 1 Key-step 2

Key-step 3

Pull

Push

Pull

Ranked List of Key-steps
1 Key-step 1 Key-step 2 Key-step 3

Key-step 1Key-step 22

Rank

Key-step 3

Figure 3.2 Correspond and Cut (CnC) framework for Procedure Learning. CnC takes in multiple

videos from the same task and passes them through the embedder network trained using the proposed

TC3I loss. The goal of the embedder network is to learn similar embeddings for corresponding key-

steps from multiple videos and for temporally close frames. The ProCut Module (PCM) localizes the

key-steps required for performing the task. PCM converts the clustering problem to a multi-label graph

cut problem solved using the Alpha Expansion algorithm [5]. The output provides the assignment of

frames to the respective key-steps and their ordering.

frame-level embeddings are denoted as fθ(Vk) = {v1k, v2k, . . . , vmk }. We assume K key-steps in a task,
where K is a hyper-parameter.

3.2.1 TC3I Loss for Learning the Embeddings

We aim to learn similar embeddings for the frames with comparable semantic information across
different temporal locations from multiple videos. For that purpose, we use Temporal Cycle Consistency
(TCC) [18] to find correspondences across time in videos.

Consider two videos V1 and V2, with lengths p and q, respectively. To check if a point vi1 in V1 is
cycle consistent, its nearest neighbour vj2 = argminv2∈V2‖vi1−v2‖ is calculated in V2. Then the process
is repeated for vj2 in V1 to get vk1 = argminv1∈V1‖v

j
2 − v1‖. If i = k, then the point is considered as

cycle consistent. An acceptable embedding space consists of a maximum number of cycle-consistent
points for a pair of sequences. Specifically, for a point vi1 in V1, we determine its soft nearest neighbor
ṽ2 in V2 by using the softmax function as follows:

ṽ2 =
∑
j

αjv
j
2, where αj =

e−‖v
i
1−v

j
2‖2∑

k e
−‖vi1−vk2‖2

. (3.1)

Here αj signifies the similarity between vi1 and individual vj2 ∈ V2. Once we have the soft nearest
neighbor, a similarity vector βi1 is calculated. β defines the proximity between ṽ2 and each frame
vk1 ∈ V1 as:

βi1[k] =
e−‖ṽ2−v

k
1‖2∑

j e
−‖ṽ2−vj1‖2

. (3.2)

18

As β is a discrete distribution of similarities over time, it peaks around the ith time index. To avoid this,
a Gaussian prior is applied to β by minimizing the normalized squared distance |i−µ|

2

σ2 as the objective.
By applying additional variance regularization, β is enforced to be peaky around i. Hence, the final
cycle consistency loss between videos V1 and V2, corresponding to ith frame of V1 is:

L(V1, V2, v
i
1) =

|i− µ|2

σ2
+ λ log(σ). (3.3)

Here, µi =
∑

k β
i
1[k]×k and σ2i =

∑
k β

i
1[k]×(k−µi)2, and λ is the regularization weight. Formulating

TCC in this way ensures the model is not heavily penalized when it cycles back to close-by frames.
We observe that there are many repetitive frames in egocentric videos because of which cycle consis-

tency loss often loops back to similar but temporally far-away frames. To alleviate the issue, we utilize
the Contrastive-Inverse Difference Moment (C-IDM) loss [30] (a modified form of Inverse Difference
Moment [9]) for applying temporal regularization on each video. The C-IDM loss between the two
frames i and j of a video V1 is computed as:

I(V1, i, j) = (1−N (i, j)) γ(i, j)max (0, ζ − d(i, j)) +N (i, j)
d(i, j)

γ(i, j)
. (3.4)

Here, γ(i, j) = (i− j)2 + 1, d(i, j) is the Euclidean distance between fθ(vi1), and fθ(v
j
1), ζ is the mar-

gin parameter, andN is the neighborhood function such that,N (i, j) = 1 if |i−j| ≤ σ, and 0 otherwise.
Here, σ is the window size for separating temporally far away frames. The C-IDM loss encourages the
embeddings of the temporally close frames to be similar and the embeddings of temporally far frames
to be dissimilar. The final loss combines both TCC and C-IDM (referred to as TC3I loss from now on):

TC3I(V1, V2) =
∑
i∈V1

L(V1, V2, v
i
1) +

∑
j∈V2

L(V1, V2, v
j
2)

+ ξ
∑
i∈V1

∑
j∈V1

I(V1, i, j) + ξ
∑
i∈V2

∑
j∈V2

I(V2, i, j). (3.5)

Here, ξ is a regularization parameter.

3.2.2 ProCut Module for Learning the Key-steps

Once we learn the embeddings, we aim to localize the key-steps required for performing the task.
Kukleva et al. [44] localize the key-steps by generating K clusters of embeddings using the K-Means
algorithm [53]. However, they need to assume a fixed order of key-steps to assign frames to the key-
steps. Instead, we propose a novel ProCut Module (PCM) for this purpose. PCM converts the clustering
problem to a multi-label graph cut problem [26], as described below.

Let G = 〈V,E〉 be a graph consisting of a set of nodes V and a set of directed edges E connecting
them. The node set V consists of K terminal nodes representing the key-steps, and non-terminal nodes
(equal to the number of frames) representing the embeddings of the frames generated using the Embed-
der network. There are two kinds of edges in the graph: t-links connecting non-terminal nodes to the
terminal nodes, and n-links connecting two non-terminal nodes.

19

0.1 0.1 0.1 0.1

0.1 0.18 0.48 0.77 0.88

0.98
0.55 0.79 0.86

0.04

0.48 0.64 0.11 0.20

Embedding

Non-terminal
Nodes (frames)

Terminal
Nodes

x t-links
(with cost)

x n-links
(with cost)0.2 0.3 0.4

0.34

Key-Step 2Key-Step 1

Key-Step 3 Key-Step x

Legend

Figure 3.3 ProCut Module (PCM). Non-terminal nodes in the graph represent the embeddings of the

frames. Terminal nodes represent the key-steps required to perform the task. The terminal and non-

terminal nodes are connected using the t-links. Non-terminal nodes are connected using the n-links.

The numbers inscribed in arrows represent the cost of using the respective link. Costs highlighted in

green represent the lowest cost to assign a frame to the key-step. For brevity, n-links are shown only for

the first non-terminal node. Diagram best viewed in colour.

We use the Fuzzy C-Means algorithm [17] to assign a cost to the t-links. The algorithm performs
soft clustering and calculates the probability of a frame belonging to each cluster. We subtract the
probability value from 1 to obtain the cost of assigning a frame to each cluster. The cost value for the
n-links is assigned based on the temporal distance between the nodes. For example, if the nodes are
temporally closer (e.g., nodes at positions 1 and 2 in Figure 3.3), the cost of assigning the same label
to them is lower; otherwise (e.g., for nodes at positions 1 and 5 in Figure 3.3), the cost is high. After
creating the graph G, we use α-Expansion [5] to find the minimum cost cut. We use the discovered cut
to assign frames to K labels. As shown in Figure 3.3, the lowest costs (highlighted in green) result in
assigning the first and second frames to key-step 1, the third and fourth frames to key-step 2, and the
last to key-step 3.

3.2.3 Determining Order of the Key-steps

When it comes to determining the ordering of the key-steps, it makes sense to allow each video to
have a distinct key-step ordering, as there can be multiple ways to perform a task. However, current
works either use a fixed order of key-steps to decode all the videos [20, 44, 77] or do not predict the
ordering [19, 68]. One of the advantages of using CnC to determine the key-step is that it allows each
video to have its independent order of the key-steps.

20

To infer the sequential order of key-steps, we calculate the normalized time for each frame vni in
video Vi consisting of p frames as T (vni) = n

p [44, 77]. Then we calculate the time instant for each
cluster as the average normalized for frames assigned to it. The clusters are then arranged in increasing
order of the average time, providing us with the sequence of key-steps used to perform the task in a
video. Once we have key-step order for all the videos of the same task, we generate their ranked list
based on the number of times the subjects followed a particular order. The order followed the most ends
up being at the top of the ranked list. Doing this enables us to determine different sequential orders of
key-steps to accomplish a task.

3.3 Experiments

3.3.1 An Updated Evaluation Protocol

Current works mostly use frame-wise metrics to evaluate the models developed for procedure learn-
ing [19, 20, 44, 68, 77]. While these metrics evaluate the procedure reasonably well compared to simply
calculating the accuracy, they do not suit datasets with significant class imbalance. Furthermore, proce-
dure learning datasets consist of significant background frames [86]. Hence, a model assigning all the
frames to the background might achieve high scores. We propose to solve this problem by calculating
the scores via the contribution of each key-step, leading to lower scores when models assign most of
the frames to the background. Further, when comparing with the previous works, (a) we use CnC on
standard third-person benchmark datasets [20, 86] and (b) employ existing metrics to evaluate.

Current works compute framewise F1-Score and IoU scores for key-step localization [19, 20, 44, 68,
77]. The F1-Score is a harmonic mean of precision and recall scores. For calculating recall, the ratio
between the number of frames having correct key-steps prediction and the number of ground truth key-
step frames across all the key-steps of a video is calculated. For precision, the denominator is the number
of frames assigned to the key-steps. For calculations, the one-to-one mapping between the ground truth
and prediction is generated using the Hungarian algorithm [43] following [2, 19, 20, 44, 68]. However,
these metrics tend to assign high scores to models that assign most frames to a single cluster, as the
key-step with most frames matches with the background frame’s label in the ground truth. Furthermore,
most of the frames are background for untrimmed procedure learning videos, resulting in high scores.

Shen et al. [68] attempt to solve this problem by analyzing the MoF score, but as pointed out in [44],
MoF is not always suitable for an imbalanced dataset. Instead, we propose calculating the framewise
scores for each key-step separately and then taking the mean of the scores over all the key-steps. This
penalises the cases when there is a large performance difference for different key-step, e.g., when all
the frames get assigned to a single key-step. Upon following this protocol, the scores for all the meth-
ods decrease. This thesis presents the results generated using the proposed evaluation protocol unless
otherwise mentioned.

21

3.3.2 Implementation Details

We use ResNet-50 [31] as our backbone network to extract the features. Motivated by [18], for
training the Embedder network, we use a pair of training videos at a time, select frames at random
within the videos, and optimize the proposed TC3I loss until convergence. The features are extracted
from the Conv4c layer, and a stack of c context frames features is created along the temporal dimension.
We reshape our input video frames to 224 × 224. To aggregate the temporal information, we pass the
combined features through two 3D convolutional layers followed by a 3D global max pooling layer, two
fully-connected layers, and a linear projection layer to output the embeddings of dimension 128. We
set the value of K to 7 and compare the performance of CnC with the other values of K in Table 3.7.
Furthermore, for all our experiments, we follow the task-specific settings laid out in [19]. We use
PyTorch [60] for all our experiments.

3.3.2.1 List of Hyper-parameters

Table 3.1 lists the hyper-parameters used for CnC.

Table 3.1 Hyper-parameter values for CnC

Hyper-parameter Value

No. of key-steps (K) 7

No. of sampled frames 32

Batch Size 5

Learning Rate 10−4

Weight Decay 10−5

Window size (σ) 300

Margin (ζ) 2.0

Regularization parameter (ξ) 1.0

No. of context frames (c) 2

Context stride 15

Embedding Dimension 128

Optimizer Adam [40]

3.3.3 Baselines

We consider three baseline methods to evaluate CnC on EgoProceL:

22

1. Random. Here we predict the labels by randomly sampling predictions from a uniform distribu-
tion with K values representing K key-steps.

2. TC3I + HC. Instead of PCM, we use the K-Means algorithm and generate K clusters from the
representation space.

3. TC3I + SS. Here, instead of PCM, we use subset selection for the key-step assignment. The
algorithm takes in the frame’s embeddings and M (hyper-parameter) latent states obtained using
K-Means [53]. It then selects a subset S (of sizeK) of the states as key-steps and finds the frames’
assignments. We use the greedy algorithm used in [19] to perform subset selection. Refer to the
supplementary material for the hyper-parameter values.

3.4 Results

3.4.1 Third-person Videos

Table 3.2 Procedure Learning from Third-person Videos. Comparison between state-of-the-art

methods and CnC on benchmark third-person video datasets [20, 86]. Our method outperforms all the

techniques using videos only (in F-Score). It even manages to give at par performance compared to the

techniques using multi-modal input. P, R, and F represent precision, recall, and F-score, respectively

Input Modality
ProceL [20] CrossTask [86]

P R F P R F

Uniform Video 12.4 9.4 10.3 8.7 9.8 9.0

Alayrc et al. [2] Video + Narrations 12.3 3.7 5.5 6.8 3.4 4.5

Kukleva et al. [44] Video 11.7 30.2 16.4 9.8 35.9 15.3

Elhamifar et al. [19] Video 9.5 26.7 14.0 10.1 41.6 16.3

Fried et al. [24] Video − − − − 28.8 −

Shen et al. [68] Video + Narrations 16.5 31.8 21.1 15.2 35.5 21.0

CnC (ours) Video 20.7 22.6 21.6 22.8 22.5 22.6

To test the generalizability of CnC on third-person videos and to ensure a fair comparison with exist-
ing methods [2, 19, 24, 44, 68], we perform experiments on third-person procedure learning benchmark
datasets: ProceL [20] and CrossTask [86]. We obtain the results of previous works from [68]. Note
that here we use the evaluation protocol employed by the previous works [19, 20, 44, 68]. As seen in
Table 3.2, CnC outperforms other methods (in terms of the F-Score) utilizing only videos as the input

23

Table 3.3 Procedure Learning Results obtained on EgoProceL. Here, CnC performs the best, high-

lighting the effectiveness of the TC3I loss and PCM

EgoProceL

CMU-MMAC EGTEA G. MECCANO EPIC-Tents PC Assembly PC Disas.

F1 IoU F1 IoU F1 IoU F1 IoU F1 IoU F1 IoU

Random 15.7 5.9 15.3 4.6 13.4 5.3 14.1 6.5 15.1 7.2 15.3 7.1

TC3I + HC 19.2 9.0 20.8 7.9 16.6 8.0 15.4 7.8 21.7 11.0 24.9 14.1

TC3I + SS 19.7 8.9 20.4 7.9 16.3 7.8 15.9 7.8 24.8 11.9 23.6 14.0

CnC 22.7 11.1 21.7 9.5 18.1 7.8 17.2 8.3 25.1 12.8 27.0 14.8

modality. Further, with only video as the input modality, CnC even manages to perform at par with
multi-modal methods. Previous works have used different forms of self-supervision. For example, [19]
use the pseudo-labels provided by subset selection, and [44] utilize the relative time-stamps of video
frames. Instead, the comparison in Table 3.2 shows that the signal provided by corresponding frames is
superior for the task of procedure learning.

3.4.2 Egocentric Videos

Table 3.3 summarises the results obtained on EgoProceL using the baselines and proposed CnC.
CnC performs higher than all three baselines. This is due to (a) the ability of the TC3I loss to learn
the representation space where similar key-steps lie close without enforcing any ordering or temporal
constraints. Moreover, TC3I adds temporal coherency to the learned representations by adopting the
C-IDM loss [30] (Figure 3.4). (b) PCM gains a comprehensive view of the problem by considering
the cost of assigning each frame belonging to every key-step and its temporal relationship with the
other frames. CnC performs better on long sequences as the TC3I loss compensates by searching for
corresponding frames in the entire length of the videos, making it possible to learn a reasonable rep-
resentation space despite the length of the videos. Further, the results in Table 3.3 show that PCM is
superior for key-frame clustering and assignment along with TC3I as it results in the highest F-Score
and IoU on EgoProceL. The gain in performance is because PCM considers the cost of assigning each
frame to every key-step and its temporal relationship with the other frames (Figure 3.4). This allows
PCM to gain a comprehensive view of the problem compared to HC, which does not consider the cost
of each frame belonging to other key-steps and SS, which has lower generalisation power [19].

24

MECCANO Bike Assembly
Ground
Truth

Random

TC3I + HC

TC3I + SS

CnC

PC Assembly

Screw "red four perforated bar", "grey
perforated bar", and "white angled

perforated bar"

Screw "red angled perforated bar" with
"grey angled perforated bar" in the

"partial model"

Fix motherboard Fix Harddisk Fix CPU Fan Fix SMPSScrew "red perforated bar"
with the "partial model"

Figure 3.4 Qualitative results for MECCANO and PC Assembly highlight the effectiveness of CnC.

Additionally, PCM outperforms HC and SS when clustering the key-steps. Furthermore, due to the

TC3I loss, CnC correctly identifies the key-steps that are short (fix a hard disk in PC Assembly). The

gray segments denote the background.

Table 3.4 Egocentric vs. Third-person results. We use different views from [12] for comparison. We

obtain better results using CnC on egocentric videos highlighting their effectiveness

View Precision Recall F1-Score IoU

Third-person (Top) 17.4 18.4 17.9 8.1

Third-person (Back) 18.8 21.5 20.0 8.5

Third-person (LHS) 21.2 22.7 21.8 9.7

Third-person (RHS) 19.8 21.7 20.6 8.7

Egocentric 21.6 24.4 22.7 11.1

3.4.3 Egocentric vs. Third-person Videos

Here, we compare the results obtained after training CnC on multiple views from CMU-MMAC [12].
As seen in Table 3.4, the frame-wise F1-Score and IoU scores are the highest for the egocentric view.
This is because egocentric videos offer lower occlusion by the expert’s body and provide higher visibil-
ity of hand-object interactions. This highlights one of the central hypotheses of this thesis: the effec-
tiveness of using egocentric videos over third-person videos for procedure learning. Also, we observe
that the results vary for third-person videos due to the camera placement. This increases one variable
when creating data for procedure learning. Alternatively, egocentric videos use head-mounted cameras,
eliminating uncertainty.

25

3.5 Ablation Study

Here, we quantitatively evaluate our design choices.

3.5.1 Effectiveness of the TC3I Loss

Here, we replace the TC3I loss in CnC with TCC [18], LAV [30], and a combination of LAV and
TCC [30] to study the efficacy of the proposed TC3I loss.

Table 3.5 Effectiveness of the TC3I loss. Here, we replace the TC3I loss in CnC with TCC, LAV, and

a combination of LAV and TCC. For the majority of the cases, the proposed TC3I loss performs well as

it focuses on frame-level correspondences and adds temporal coherency by adopting the C-IDM loss

Experiment
CMU-MMAC [12] EGTEA Gaze+ [51]

Precision F-Score IoU Precision F-Score IoU

TCC + PCM 18.5 19.7 9.5 17.5 19.7 8.8

LAV + TCC + PCM 18.8 19.7 9.0 16.4 18.6 7.5

LAV + PCM 20.6 21.1 9.4 17.4 19.1 8.0

TC3I + PCM (CnC) 21.6 22.7 11.1 19.6 21.7 9.5

Experiment
MECCANO [62] EPIC-Tent [36]

Precision F-Score IoU Precision F-Score IoU

TCC+PCM 15.1 17.9 8.7 14.2 14.9 7.8

LAV+TCC+PCM 13.4 15.6 7.3 16.0 16.7 8.5

LAV+PCM 14.6 17.4 7.1 15.2 15.8 8.3

TC3I+PCM (CnC) 15.5 18.1 7.8 17.1 17.2 8.3

Experiment
PC Assembly PC Disassembly

Precision F-Score IoU Precision F-Score IoU

TCC+PCM 19.9 21.7 11.6 22.0 23.4 12.2

LAV+TCC+PCM 21.6 21.1 10.8 21.0 24.3 12.3

LAV+PCM 21.5 22.7 11.7 26.4 26.5 12.9

TC3I+PCM (CnC) 25.0 25.1 12.8 28.4 27.0 14.8

26

TC3I loss, in Table 3.5, obtains the highest F-Score and IoU. As observed in our initial set of ex-
periments, TCC loss lacks temporal coherency, due to which temporally close frames do not lie close
in the learned representation space, resulting in lower results when compared to TC3I and LAV, which
account for temporal coherency using the C-IDM loss. For LAV + TCC, our observations are consistent
with [30] because there is no performance gain when directly combining LAV and TCC losses since
LAV works on L2-normalised embeddings, whereas TCC does not [30]. The LAV loss performs better
than TCC and LAV + TCC; however, the results are not better than TC3I because the Soft-DTW used in
LAV accounts for global alignment. However, LAV does not focus on the per-frame features [30], which
is beneficial when looking for similar key-steps in different videos. The TC3I loss overcomes these is-
sues by focusing on correspondences in multiple videos at frame level and adding temporal coherency
by adopting the C-IDM loss.

Table 3.6 Effectivenss of PCM. Results after replacing PCM with HC and SS with different losses

Experiment
CMU-MMAC [12] EGTEA Gaze+ [51]

Precision Recall F-Score IoU Precision Recall F-Score IoU

TCC+HC 17.06 19.47 18.08 8.55 16.78 20.00 18.25 8.33

TCC+SS 17.34 19.71 18.31 8.66 16.96 20.29 18.48 8.18

TCC+PCM 18.46 21.45 19.71 9.46 17.46 22.71 19.74 8.81

LAV+TCC+HC 17.37 18.40 17.76 8.61 16.59 19.72 18.02 7.35

LAV+TCC+SS 17.46 17.94 17.57 8.53 16.16 20.05 17.90 7.39

LAV+TCC+PCM 18.80 21.11 19.71 9.03 16.44 21.40 18.60 7.45

LAV+HC 18.44 19.78 19.07 8.66 16.59 18.18 17.35 7.87

LAV+SS 17.82 18.99 18.36 8.53 16.08 18.13 17.04 7.87

LAV+PCM 20.62 21.95 21.11 9.40 17.42 21.17 19.12 8.02

TC3I+HC 18.47 20.27 19.15 8.98 18.74 23.70 20.82 7.93

TC3I+SS 18.53 21.13 19.66 8.86 17.71 24.09 20.36 7.94

CnC 21.62 24.38 22.72 11.08 19.58 24.68 21.72 9.51

3.5.2 Effectiveness of PCM

Table 3.6 shows the results after using various losses with HC, SS, and PCM for procedure learn-
ing [12, 51]. Nearly all the experiments using PCM achieve the highest scores for other losses. Addi-

27

tionally, we achieve the highest scores with CnC. Due to the characteristics of TC3I loss and PCM, the
results are consistent with our previous observations.

Table 3.7 Selecting K. Results with various values of K. Numbers in bold are highest in the respective

row, and underlined numbers are highest in the respective column

Experiment
CMU-MMAC [12] EGTEA Gaze+ [51]

K=7 K=10 K=12 K=15 K=7 K=10 K=12 K=15

Random 15.7 12.7 11.6 10.4 15.4 12.3 11.4 10.4

TC3I + HC 19.2 17.4 16.3 16.8 20.8 17.8 16.7 17.3

TC3I + SS 19.7 17.3 17.0 15.7 20.4 17.8 16.7 16.8

CnC 22.7 19.1 20.4 20.1 21.7 19.9 19.9 19.9

Experiment
MECCANO [62] EPIC-Tents [36]

K=7 K=10 K=12 K=15 K=7 K=10 K=12 K=15

Random 13.4 10.1 8.8 7.4 14.1 10.6 9.1 8.3

TC3I+HC 16.6 14.0 11.4 10.8 15.4 12.1 10.6 9.9

TC3I+SS 16.3 12.6 12.2 10.7 15.9 11.9 10.7 10.4

CnC 18.1 15.2 13.5 11.9 17.2 11.1 12.1 9.46

Experiment
PC Assembly PC Disassembly

K=7 K=10 K=12 K=15 K=7 K=10 K=12 K=15

Random 15.1 11.0 10.4 9.2 15.3 11.8 10.7 9.6

TC3I+HC 21.7 17.3 20.7 19.2 24.9 18.3 18.0 20.7

TC3I+SS 24.7 18.1 18.1 19.7 23.6 19.7 21.0 20.7

CnC 25.1 18.7 20.7 19.0 27.0 26.5 24.5 23.6

3.5.3 Selecting the value of K

Table 3.7 contains the results of CnC and the baselines as the function of K. Additionally, it features
the results after replacing PCM with HC and SS as the function of K. Here, key observations are: (a)
CnC performs the best when K = 7, (b) the results do not change significantly for CnC as K increases.

28

However, we observe a decline in the results for HC and SS as K increases, highlighting the effectiveness
of PCM for key-step localisation.

3.6 Summary

Learning procedures from the visual demonstration of a task by an expert is an important step in
scaling the learning capabilities of autonomous agents. Unlike current state-of-the-art techniques, in-
stead of third-person videos, we have proposed procedure learning from the first-person viewpoint. We
proposed a new technique, CnC, for procedure learning from egocentric videos that utilize the proposed
TC3I loss to learn an embedding space in a self-supervised fashion. Finally, we employ PCM to identify
the key-steps. Our results demonstrate the superiority of using the egocentric view and the effectiveness
of the proposed technique for procedure learning. In the next chapter, we explore and evaluate the utility
of graphs for procedure learning.

29

Chapter 4

Graphs for Procedure Learning

Figure 4.1 UnityGraph for three pizza making videos. UnityGraph facilitates procedure learning by

creating a unified representation of an arbitrary number of videos from the same category. Here, the

nodes represent a clip from the video. Further, the temporal edges connect temporally close frames,

allowing intra-video context, whereas the spatial edges connect semantically similar frames across the

videos, enabling inter-videos context.

In this chapter, we first motivate using graphs for procedure learning (Section 4.1). Then we take
a detailed look at the proposed Graph-based Procedure Learning (GPL) framework (Section 4.2). Fur-
thermore, we compare GPL with the state-of-the-art on third-person datasets (Section 4.4.1) and with
CnC on EgoProceL (Section 4.4.2). Finally, we perform an extensive ablation study and determine GPL
hyper-parameters for both third- and first-person views (Section 4.5).

30

4.1 The Motivation behind Utilizing Graphs

Consider developing a robot capable of assembling a phone in a factory. Hard coding the sequence
of steps required to piece together the phone will require years of effort. Instead, it would be useful if
a robot could observe a person fabricating the phone multiple times and learns from it! Driven by this
objective, the focus of this chapter is on the task of unsupervised procedure learning from videos.

As shown in Figure 4.1 and discussed in Section 1.1, procedure learning deals with multiple videos
of a task and captures the difference in the order of key-steps, as shown by V2 and V3 (Figure 4.1). Fur-
thermore, as procedure learning deals with localising the key-steps, it differs from the video alignment
task. Therefore, considering the utility of procedure learning and its distinctness from existing tasks, we
devise the Graph-based Procedure Learning (GPL) framework.

GPL is a three-staged unsupervised framework for procedure learning. The first stage of GPL con-
sists of UnityGraph, shown in Figure 4.1. UnityGraph is a graph that models an arbitrary number of
videos from the same task. For creating UnityGraph, the video clips are first passed through a pre-trained
I3D ResNet-50 [7, 31] to get a node. The nodes are later connected based on (a) semantic similarity
across videos (spatial edges) and (b) temporal closeness in the same video (temporal edges). Due to this
structure, UnityGraph captures both the inter-video and intra-videos context. This sets UnityGraph apart
from the previous approaches that estimate the procedure using one [19, 20, 44, 77] or two [3] videos.

As a graph enables us to create a spatial edge between two nodes from different videos irrespective
of the key-step order (Figure 4.1), it enables us to overcome previous works’ key-step ordering con-
straints [44, 77]. Also, the range of granularity (number of frames) to create the nodes is controllable,
allowing us to test various configurations. Finally, as shown in Figure 4.1, the edges capture two forms
of relationships (a) temporal across the same video and (b) semantic across the videos, enabling us to
model inter-video and intra-videos context.

Most works explore procedure learning in a supervised [57, 65, 85] or weakly supervised [4, 8, 15,
33, 48, 49, 63, 64, 86] setting. Supervised methods require frame-level key-step annotations, making
them unscalable [3]. On the other hand, weakly supervised learning methods require an ordered or
unordered list of key-steps. Creating the lists requires viewing the videos or defining heuristics leading
to scalability issues [19, 20]. Instead, the second stage of GPL aims to enhance UnityGraph’s node
embeddings in an unsupervised manner. To this end, we employ the Node2Vec algorithm [27]. After
updating the embeddings, in the final stage, we perform KMeans clustering and localise the key-steps
required to perform the task.

The works closely related to ours employ various methods to create frame-level features to identify
the procedure. Kukleva et al. [44] use the signal provided by the relative timestamp of the frame. Elham-
ifar et al. [19] discover and utilise the attention features from individual frames. These works exploit
different attributes of videos to extract the signal. However, they fall short in creating a representation
to utilise the relationship between all the frames across the input videos. In this work, we propose Uni-
tyGraph, which first creates a clip-level representation and then captures the correspondences between
the key-steps across videos.

31

4.2 Graph-based Procedure Learning (GPL)

Key-step
4

Key-step
3

Key-step
2

Key-step
1

List of Key-steps

Key-step 1 Key-step 2

Key-step 3UnityGraph

Filtering background
frames and clustering

Updating embeddings
using Node2Vec

 Key-step 4

Legend:

Temporal Edge
(Intra-video)

Clip-level
Embeddings

Spatial Edge
(Inter-videos)

Highlighting a portion of
UnityGraph

Figure 4.2 Graph-based Procedure Learning (GPL) framework. Given multiple videos of the same

task, we create UnityGraph. Using the Node2Vec algorithm, we exploit the structure of UnityGraph

to enhance the node embeddings in an unsupervised manner. For example, the temporal and spatial

clips that were originally far in the embedding space are closer after Node2Vec (highlighted in blue).

Finally, we cluster the embeddings using KMeans and filter the background frames to obtain the key-

steps required to perform the task.

Autonomously inferring the key-steps required to perform a task opens up the possibility of creating
a variety of autonomous, guidance, and assistive systems. The majority of previous works generate self-
supervised signals from either single or a couple of videos. However, to better discover the procedure,
getting the signal across all the videos is crucial. To this end, we utilise the capability of graphs to
represent abstract video data. As shown in Figure 4.2, the first part of GPL framework consists of the
proposed UnityGraph. It is a novel graph representation for an arbitrary number of videos of a task
(Section 4.2.1).

The initial features of UnityGraph are created using a pre-trained I3D ResNet-50 [7, 31]. To further
improve the features, as shown in Figure 4.2, the next step in GPL involves updating the embeddings
using the Node2Vec algorithm in an unsupervised manner. Once the embeddings are learned, they are
clustered using the KMeans algorithm (Section 4.2.2). The final step of GPL involves ordering the
discovered clusters based on the average timestamps of the constituting frames (Section 4.2.2).

Notations: As shown in Figure 4.2, GPL takes in n untrimmed videos of the same task, denoted by
V = {Vi : i ∈ N, 1 ≤ i ≤ n}. Note that the n videos can have a different number of frames. A video
Vx with m frames is divided into multiple clips using a sampling rate, stride, and window size of σ, ω,
and ψ, respectively. The clips are then passed through a pre-trained I3D ResNet-50, denoted as fθ (with
parameters θ), used to generate node-level embeddings of dimension d for UnityGraph. The clips for
video Vx with z clips are denoted as Vx = {c1x, c2x, . . . , czx} and the video’s node-level embeddings are
denoted as fθ(Vx) = {v1x, v2x, . . . , vzx}. Furthermore, we assume K key-steps in a task, where K is a
hyper-parameter.

32

4.2.1 Representing Videos using UnityGraph

We make the following assumptions when creating UnityGraph: (a) To compensate for the high
frame rate and long action duration, we create UnityGraph’s nodes at the clip level. (b) Using a 3D
CNN, each clip is converted to an embedding. The motivation here is that the sampled clip either
contains one action or none. (c) To keep the problem tractable, we assume the objects and actions are
semantically similar across the task’s videos.

4.2.1.1 Creating UnityGraph’s Nodes and Edges

a) Creating the Nodes

I3D
ResNet-50

W
in

do
w

 S
iz

e

St
rid

e
Sa

m
pl

ed

fr
am

es

UnityGraph
Node 1

UnityGraph
Node 2

t = 0

t = n

b) Creating the Edges

0.6 0.9

0.8

0.4

0.3

0.5

0.2

0.3

0.3

0.1

Figure 4.3 Creating UnityGraph’s Nodes and Edges. a) Given window size (ψ), stride (ω), and

sampling rate (σ), a clip from a video is passed through a pre-trained I3D ResNet-50 to generate the

node’s embedding. b) We consider nodes from three videos (V1, V2, V3). For brevity, we show the

similarity scores between v12 and all the nodes in V1 and V3. Edges with the highest semantic similarity

(marked in green) are retained.

Figure 4.3 summarises the creation of UnityGraph. A node v1x in UnityGraph is the embedding of a
clip c1x for video Vx. The embedding is a d-dimensional vector created using an I3D ResNet-50 [7, 31].
For example, for V1 with z = 5, the nodes are created as:

vi1 = fθ(c
i
1),where i ∈ {1, . . . , z} (4.1)

33

Creating nodes in this way helps with (a) converting a volume of frames (the clip) to an embed-
ding and (b) comparing and modifying the embeddings to understand the procedure. Figure 4.3 (a)
summarises this process.

Once the nodes are created, the graph is completed by creating edges between them. The edges
are created at two levels (a) spatial, which facilitate inter-videos connection, and (b) temporal, which
facilitate intra-video connection.

To better understand the process, consider two videos (V1, V2) from Figure 4.3 (b). Let us focus on
creating an edge between the first node (v12) from V2 and nodes from V1. The goal is to find the node in
V1 having the highest semantic similarity with v12 . To this end, we calculate the cosine similarity (SC)
between v12 and all the nodes in V1:

SC(v
1
2, v

i
1) =

∑d
j=1 v

1
2jv

i
1j√∑d

j=1(v
1
2j)

2
√∑d

j=1(v
i
1j)

2
,where i ∈ {1, . . . , z}. (4.2)

The spatial edge is created between the node with the highest similarity score:

Edge(v12, v
i
1) =

1, ifmax(SC(v
1
2, v

i
1))

0, otherwise
,where i ∈ {1, . . . , z}. (4.3)

To create the temporal edges, we connect the neighboring nodes from the same video. Let us consider
creating temporal edges for V2:

Edge(vi2, v
j
2) =

1, if |i− j| = 1

0, otherwise
,where i, j ∈ {1, . . . , z}. (4.4)

To summarise, UnityGraph consists of nodes created using Equation (4.1). The nodes are spatially
connected using Equation (4.3) and temporally connected using Equation (4.4).

4.2.1.2 Detecting the Background Frames

Procedure learning datasets majorly consists of background frames [3, 86], making it difficult to
determine the procedure. We observe that a majority of the background frames involve people searching
for objects, reading instructions, and waiting for an automated step to finish. Furthermore, as shown in
Fig. 4.4, these activities do not involve hand-object interaction. Therefore, we argue that the frames
lacking hand-object interactions represent the background. Figure 4.4 shows how we utilise Shan et
al.’s [67] hand-object interaction detection model to identify the background frames.

4.2.2 Identifying Key-steps and their Order

4.2.2.1 Updating and Clustering UnityGraph’s Embeddings

As illustrated in Figure 4.2, using default embeddings obtained from the pre-trained network can
result in embeddings lying far from each other. To further improve the embeddings in an unsupervised

34

a) No hand-object interaction; Background

b) Hand Object Interaction; Foreground

Figure 4.4 Detecting the Background Frames. We use the hand-object detection model from [67]. a)

Frames not containing hand-object interaction. Second image in the first row contains a hand without

an interaction with an object, hence, background. b) Frames containing hand-object interaction and

contribute towards understanding the procedure.

manner, we propose to update them using the Node2Vec algorithm [27]. Once the embeddings are
updated, we use the KMeans algorithm [53] to discover the key-steps.

4.2.2.2 Identifying the Order of Key-steps

Once we have the clusters of key-steps, we follow [3] to determine their order. For each clip, the
normalized time is calculated [3, 44]. Based on the cluster clips’ normalized time, the average time for
the cluster is calculated. The clusters are then arranged in an increasing order of time to generate the
order of key-steps. This approach has two advantages (a) it allows each video to have its own key-step
order, and (b) it does not require providing the key-step ordering information.

4.3 Experiments

4.3.1 Evaluation

Unless otherwise mentioned, we evaluate the proposed GPL framework using the metrics from Chap-
ter 3. We take the mean of the scores over all the key-steps and report F1 and IoU Scores. F1-Score
is the harmonic mean of the precision and recall scores. For precision, we calculate the ratio between

35

Table 4.1 Hyper-parameter values for different components of the GPL framework. Here, “FP” refers

to first-person, “TP” refers to third-person, and “Ablation table” refers to the table containing quantita-

tive results for the respective hyper-parameter

Hyper-parameter Notation Value (FP) Value (TP) Ablation Table

Sampling Rate σ 8 4 Table 4.4

Stride ω 5 10 Table 4.4

UnityGraph’s Window Size ψ 10 10 Table 4.4

Similarity Metric SC Cosine Cosine Table 4.5

Walk Count α 100 50 Table 4.8

Walk Length γ 100 50 Table 4.8

Node2Vec’s Window Size β 12 10 Table 4.8

Return Parameter p 1.0 1.0 Table 4.6

In-out Parameter q 1.0 1.0 Table 4.6

Clustering Technique − KMeans KMeans Table 4.7

No. of Key-steps K 7 7 Table 4.9

No. of Videos n max(n) max(n) Table 4.11

Embedding Dimension d 400 400 −

the number of frames having correct key-steps prediction and the number of frames assigned to the key-
steps. For recall, the denominator is the number of ground truth key-step frames across all the key-steps
of the video. Following [2,3,19,20,44,68], we obtain the one-to-one mapping between the ground truth
and prediction using the Hungarian algorithm [43].

4.3.2 Implementation Details

We use features from the final layer of 3D ResNet-50 [31] pre-trained on Kinetics 400 [7] pro-
vided by PyTorch [60]. To keep feature extraction tractable, we reshape the short side of the video
frame to 256, while maintaining the aspect ratio. For detecting the hand-object interactions, we use the
‘handobj 100K+ego’ model provided by [67]. We create and manipulate graphs using NetworkX [28].
Furthermore, Table 4.1 contains the hyper-parameter values obtained for egocentric and third-person
view after an extensive ablation study.

36

4.3.3 Datasets

Contrary to previous works that use either first- or third-person datasets for procedure learning,
we perform experiments on both views. For third-person procedure learning, we choose standard
benchmark datasets, CrossTask [86] and ProceL [20]. Both datasets have been created from videos
on YouTube. CrossTask consists of 213 hours of videos from 18 primary tasks (2763 videos). ProceL
consists of 47.3 hours of videos from 12 diverse tasks (720 videos). To demonstrate the efficiency of
the proposed GPL framework, we evaluate it on the first-person EgoProceL [3] dataset. It consists of 62
hours of egocentric videos of 130 subjects performing 16 tasks.

4.3.4 Baselines

(a) Random: Here, the labels are obtained by randomly sampling predictions from a uniform distri-
bution with K values representing K key-steps.

(b) CnC [3]: This work generates frame-level embeddings by learning an embedding space that
exploits temporal correspondences across a couple of videos.

(c) GPL-I3D: Here, we do not update the embeddings using Node2Vec. Instead, we utilise Unity-
Graph consisting of nodes embeddings from I3D ResNet-50 [7, 31].

Table 4.2 Procedure Learning from Third-person Videos. Comparison between state-of-the-art

methods and GPL on third-person datasets [20, 86].

ProceL [20] CrossTask [86]

Precision Recall F1-Score Precision Recall F1-Score

Uniform 12.4 9.4 10.3 8.7 9.8 9.0

Alayrc et al. [2] 12.3 3.7 5.5 6.8 3.4 4.5

Kukleva et al. [44] 11.7 30.2 16.4 9.8 35.9 15.3

Elhamifar et al. [19] 9.5 26.7 14.0 10.1 41.6 16.3

Fried et al. [24] − − − − 28.8 −

Shen et al. [68] 16.5 31.8 21.1 15.2 35.5 21.0

CnC [3] 20.7 22.6 21.6 22.8 22.5 22.6

GPL-I3D (ours) 21.3 23.0 22.1 23.4 23.0 23.2

GPL (ours) 22.4 24.5 23.4 24.9 24.1 24.5

37

4.4 Results

4.4.1 Third-person Videos

Table 4.2 compares state-of-the-art methods and GPL on two third-person datasets [20, 86]. We
obtain the results for the previous works from [3, 68]. Here, for a fair comparison, the framework is
evaluated using the metrics laid out in [19, 44, 68].

4.4.2 Egocentric Videos

Table 4.3 compares state-of-the-art and GPL on the EgoProceL dataset consisting of 16 tasks. The
results for tasks in CMU-MMAC [12] and EGTEA Gaze Plus [51] have been averaged and reported.
Note that EgoProceL is a recent dataset for egocentric procedure learning, due to this, there is only
one approach (CnC [3]) to fairly compare with. Furthermore, as other methods have been specifically
designed around third-person datasets, we compare with them only on those datasets (Table 4.2).

Table 4.3 Results on egocentric view obtained on EgoProceL. Due to higher generalisation capability

and effectively modeling the temporal and spatial relationships, the GPL framework performs the best.

This highlight the effectiveness of the video representation generated using the proposed UnityGraph

and Node2Vec for updating the embeddings based on the node neighborhoods. Note that EgoProceL is

a recent dataset for egocentric procedure learning, due to this, there is only one approach (CnC [3]) to

fairly compare with. Furthermore, as other methods have been specifically designed around third-person

datasets, we compare with them on those datasets in Table 4.2

EgoProceL

CMU-MMAC EGTEA G. MECCANO EPIC-Tents PC Assembly PC Disassembly

F1 IoU F1 IoU F1 IoU F1 IoU F1 IoU F1 IoU

Random 15.7 5.9 15.3 4.6 13.4 5.3 14.1 6.5 15.1 7.2 15.3 7.1

CnC [3] 22.7 11.1 21.7 9.5 18.1 7.8 17.2 8.3 25.1 12.8 27.0 14.8

GPL-I3D (ours) 28.4 15.6 25.3 14.7 18.3 8.0 16.8 8.2 22.0 11.7 24.2 13.8

GPL (ours) 31.7 17.9 27.1 16.0 20.7 10.0 19.8 9.1 27.5 15.2 26.7 15.2

The results obtained highlight (a) the generalisation capabilities of GPL. As GPL obtains high results
on tasks using objects with high variability in size, different locations, and a variety of lighting condi-
tions. (b) Effectiveness of using UnityGraph for modeling temporal and spatial relationships across
the videos. Contrary to the previous works, UnityGraph enables creating a single representation for an
arbitrary number of videos. (c) Efficacy of utilising Node2Vec for updating the node embeddings. The

38

MECCANO Bike Assembly
Ground
Truth

Random

CnC

PC Assembly

GPL + I3D

GPL

Figure 4.5 Qualitative Results for one video each of Bike and PC Assembly. Each color for a task

denotes one key-step and gray sections are the background. The first row contains the ground truth label,

the second row contains the results obtained by randomly predicting the key-steps, the third row shows

results obtained using CnC [3], the fourth row highlights the results using UnityGraph’s node generated

using I3D ResNet-50, and the last row shows results obtained for the GPL framework. As can be seen,

the segments obtained from GPL are more coherent upon using Node2Vec to update UnityGraph’s

embeddings. This highlights the efficacy of both, UnityGraph and Node2Vec.

results consistently increase upon using Node2Vec for updating the embeddings of UnityGraph-I3D.
This further justifies our hypothesis, shown in Figure 4.2, that Node2Vec improves the embeddings and
helps in inferring the procedure.

4.4.3 Qualitative Analysis

Figure 4.5 shows the qualitative results obtained using the baselines and the proposed GPL frame-
work on two tasks from EgoProceL.

Figure 4.6 generated from UnityGraph’s embeddings before and after applying the Node2Vec [27]
algorithm. On the left-hand side of Figure 4.6, t-SNE visualisation for UnityGraph’s clip-level embed-
dings before applying the Node2Vec algorithm is shown. Though UnityGraph’s embeddings are able
to capture the background clips well, they fall short of bringing the key-steps close in the embedding
space. As can be seen, the ”apply jam” key-step is spread across the embedding space.

On the other hand, on the right-hand side of Figure 4.6, t-SNE visualisation for UnityGraph’s clip-
level embeddings after applying the Node2Vec algorithm is shown. Here, we can see that the embed-
dings have arranged themselves in a particular pattern. In the majority of the cases, the embeddings for
similar key-steps have come closer. For example, the cluster on the top consists of subjects applying
peanut butter. The clips for “apply jam” have concentrated in a few selected clusters. And due to the
nature of UnityGraph (connecting clips with similar semantic information), background clips with sim-
ilar styles of information have come closer. For example, the cluster towards the center has background
clips of subjects moving from one location to another.

39

UnityGraph embeddings before Node2Vec
UnityGraph embeddings

after Node2Vec

Figure 4.6 t-SNE [76] visualisation for the task of making a sandwich [3, 12] before and after up-

dating UnityGraph’s embeddings using the Node2Vec algorithm [27]. Here, each color represents a

key-step’s category, as noted in the legend. The left side of the figure consists of t-SNE visualisation

obtained before using the Node2Vec algorithm. The right side of the figure consists of t-SNE visualisa-

tion obtained after updating UnityGraph’s embeddings using Node2Vec. As can be seen, upon updating

the embeddings using Node2Vec, clips with similar key-steps come close. For example, the cluster on

the top consists of clips of subjects applying peanut butter, whereas the cluster towards the centre has

background clips of subject moving themselves from one place to other.

40

4.5 Ablation Study

To strike a balance between finding the optimal hyper-parameters and minimising the environmental
impact of the experiments, unless otherwise mentioned, we perform ablation on two challenging tasks:
PC Assembly (egocentric) [3] and Change Tire (third-person) [20]. Furthermore, due to the different
attributes of first- and third-person videos, we select one set of hyper-parameters for each of the views.
Also, unless otherwise mentioned, UnityGraph is created using background frame detection.

4.5.1 Creating UnityGraph

In Table 4.4, we test various values for frame sampling rate (σ), stride (ω), and window size (ψ). As
egocentric videos have high motion variability, the maximum scores are obtained for a high sampling
rate of 8. Also, the stride (5) and window size (10) are lowest for egocentric videos enabling the creation
of nodes with high variability in less time. For third-person videos, the maximum scores are obtained for
a low sampling rate of 4. This is because third-person cameras are fixed and do not have high variability
in scenes. Furthermore, the stride of 10 and window size of 10 works best as it allows us to sample
sparsely and get the information.

Table 4.4 Hyper-parameters for creating UnityGraph. Here, the results are obtained upon changing

various parameters for creating UnityGraph. R, and F represent recall, and F-score, respectively

Sampling Rate Stride Window Size PC Assembly Change Tire

R F IoU R F IoU

4 5 10 23.0 22.6 12.5 23.1 20.7 12.6

8 5 10 28.8 27.2 15.1 23.8 21.0 12.8

4 10 10 20.0 19.9 11.0 26.2 23.2 13.9

8 10 10 28.1 26.8 15.0 23.7 21.1 12.7

4 15 10 25.0 24.3 13.5 23.8 21.4 13.1

8 15 10 25.7 26.6 14.3 23.2 21.0 12.9

4 5 15 22.2 21.7 11.9 24.1 21.0 12.4

8 5 15 21.1 20.6 10.7 21.2 19.6 11.9

4 10 15 25.2 24.0 13.2 23.9 21.6 13.2

8 10 15 23.4 22.3 12.3 25.1 22.8 13.6

4 15 15 23.7 22.9 12.8 22.7 20.1 12.2

8 15 15 22.7 21.8 11.9 24.2 21.8 13.3

41

Table 4.5 Similarity metrics to create UnityGraph’s edges. Here, the results are obtained upon

generating edges by various similarity metrics. R, and F represent recall, and F-score, respectively

Similarity

Metric

PC Assembly Change Tire

R F IoU R F IoU

Eucledian 26.0 25.3 13.4 24.8 21.7 13.5

Cosine 28.8 27.2 15.1 23.8 21.0 12.8

Table 4.5 contains the results obtained after using various similarity measurement approaches for
creating edges of UnityGraph.

4.5.2 Learning and Clustering the Embeddings

Table 4.6 analyses return and in-out parameters for Node2Vec. Return parameter controls the likeli-
hood of immediately revisiting a node in the walk, and in-out parameter allows the search to differentiate
between inward and outward nodes [27]. For both the views, we obtain highest results for p and q as
1.0 and 1.0, respectively.

Table 4.6 Hyper-parameters for walks over UnityGraph. Here, we perform multiple walks to analyse

the hyper-parameters for Node2Vec. R, and F represent recall, and F-score, respectively

Return

Parameter

In-out

Parameter

PC Assembly Change Tire

R F IoU R F IoU

0.1 0.5 28.7 26.9 14.8 24.5 21.8 13.2

0.1 1.0 28.4 26.7 14.7 24.5 21.8 13.2

0.5 0.1 24.2 23.0 12.3 20.5 18.9 11.4

0.5 1.0 28.5 26.8 14.7 20.6 19.0 11.5

1.0 0.1 24.6 24.6 14.5 25.6 21.9 13.0

1.0 0.5 28.8 27.3 15.1 20.4 18.9 11.4

1.0 1.0 29.0 27.5 15.2 25.6 21.9 13.1

In Table 4.7, we experiment with two clustering techniques (a) KMeans and (b) Spectral Clustering.
Here, the motivation is to analyse the shape in which the data is lying in the embedding space. Here,

42

KMeans performs the best, showing that the data is mostly spherical in shape and does not require
manifold-based clustering techniques.

Table 4.7 Clustering the embeddings. Here, the results are obtained upon using multiple clustering

methods on the learned embeddings. R, and F represent recall, and F-score, respectively

Clustering

Technique

PC Assembly Change Tire

R F IoU R F IoU

KMeans 29.0 27.5 15.2 25.6 21.9 13.1

Spectral 14.4 22.0 4.5 12.2 18.6 5.3

Table 4.8 Hyper-parameters for learning the embeddings. Here, the results are obtained upon vary-

ing Node2Vec’s parameters. R, and F represent recall, and F-score, respectively

Walk

Count

Walk

Length

Window

Size

PC Assembly Change Tire

R F IoU R F IoU

50 50 8 28.7 27.2 15.1 20.6 19.2 11.6

100 50 8 23.0 22.3 12.1 20.6 19.2 11.6

50 100 8 28.3 26.6 14.7 23.8 21.1 12.9

100 100 8 28.1 26.1 14.3 25.1 21.9 13.1

50 150 8 28.2 26.6 14.7 23.9 21.1 12.9

100 150 8 28.0 26.0 14.3 25.0 21.7 13.0

50 50 10 28.8 27.3 15.1 26.1 22.6 13.4

100 50 10 27.9 26.3 14.5 24.3 21.9 13.2

50 100 10 28.8 27.2 15.1 23.8 21.0 12.8

100 100 10 23.1 22.5 12.1 24.4 21.7 13.2

50 150 10 23.0 22.4 12.0 24.4 22.0 13.3

100 150 10 27.7 26.2 14.4 23.9 21.1 12.9

50 50 12 28.9 27.5 15.2 24.8 21.7 12.9

100 50 12 24.6 23.4 12.5 24.4 21.8 13.2

50 100 12 27.8 26.3 14.3 24.4 21.1 12.7

100 100 12 29.0 27.5 15.2 25.6 21.9 13.1

50 150 12 28.7 27.1 14.8 24.4 21.1 12.7

100 150 12 28.8 27.3 15.0 24.6 21.8 13.2

43

In Table 4.8, we explore various values for Walk Count (α), Walk Length (γ), and Window Size
(β). For egocentric videos, we achieve the best results for α as 100, γ as 100, and β as 12. Due to
high variability of scenes in egocentric videos, the walk’s count required to update the embeddings are
high. This also leads to having a high walk length and a high number of frames in a window. Instead,
for third-person videos, we require comparatively less walk count (50), walk length (50), and window
size (10). As a majority of the videos in third-person datasets are from the internet, they skip a large
number of repetitive portions of the task [3]. Due to this, the number of walks and the length are less.
Furthermore, these datasets contain multiple non-relevant frames (explanation/animation) that should
be circumvented.

4.5.3 Number of Key-steps and Background Frames

Table 4.9 contains results obtained upon varying the values of K (number of key-steps) for the GPL
framework. The results follow the trend in the previous work [3] and are highest for K = 7. The results
decrease significantly as the values of K increase.

Table 4.9 Tuning K. Here, the results are obtained for various values of K. R, and F represent recall,

and F-score, respectively

K
PC Assembly Change Tire

R F IoU R F IoU

7 29.0 27.5 15.2 25.6 21.9 13.1

10 19.5 20.4 10.4 17.6 16.9 10.2

12 18.8 20.5 10.2 14.4 14.2 8.5

15 19.7 22.5 10.7 13.5 13.6 7.4

As discussed in Section 4.2.1.2, procedure learning datasets have high background frames [86]. To
filter the background frames, we detect hand-object interaction in first-person videos. The frames with
hand-object interaction are considered foreground, and the rest are background. Table 4.10 shows the
results obtained with and without the background frame’s filtration. The results improve upon filtering
the background frames for the categories that involve working in an open space. For example, in Greek
Salad [51], the subjects are working in an unrestricted kitchen, as compared to PC Assembly [3], where
they are working in a restricted space with hands being visible a majority of the time.

44

Table 4.10 Detecting the background frames. Here, the results are obtained upon filtering the frames

that do not contain hand-object interaction. Results improve for categories with subjects working in an

unrestricted space. R, and F represent recall, and F-score, respectively

Hand-Object

Interaction

PC Assembly Greek Salad

R F IoU R F IoU

Not Checked 29.5 27.6 14.4 25.4 22.3 12.7

Checked 29.0 27.5 15.2 34.9 26.5 21.4

4.5.4 Number of Videos for Creating UnityGraph

Table 4.11 contains the results obtained upon increasing the number of videos used to create Unity-
Graph. The motivation for these experiments is to explore the effectiveness of the GPL framework as a
function of the number of videos. For performing these experiments, we select the tasks that have the
number of videos in the powers of two. We create n graph and concatenate the results to keep the evalu-
ation the same as the other experiments. As seen in Table 4.11, the highest F-score and IoU are obtained
when the number of videos is the highest. This supports our major claim that using UnityGraph to create
a unified representation for all the videos of a task allows us to capture (a) temporal relationships in the
same video and (b) semantic relationships across the videos. Furthermore, as the size of the datasets
increase, GPL, along with UnityGraph, will obtain high results.

Table 4.11 Number of Videos. Here, the results are obtained upon systematically increasing the number

of videos for creating UnityGraph. R, and F represent recall, and F-score, respectively

Number of

Videos

Bacon and Eggs [51] Tie-Tie [20]

R F IoU R F IoU

4 23.6 20.0 11.4 20.9 18.4 11.2

8 25.0 22.1 12.1 21.3 18.8 11.2

16 27.8 23.1 12.6 20.1 17.6 10.7

32 − − − 20.2 18.0 10.8

64 − − − 23.5 19.7 11.4

45

4.6 Summary

Procedure learning is an important direction toward creating systems capable of assisting humans.
Contrary to current approaches, we propose the Graph-based Procedure Learning (GPL) framework.
GPL consists of UnityGraph which creates a unified representation for multiple videos of the same task.
UnityGraph allows us to model both temporal and spatial information. The results obtained and the
ablation performed demonstrates the capability of a graph-based approach for procedure learning.

46

Chapter 5

Conclusion

In this thesis, we proposed and thoroughly investigated two approaches for unsupervised procedure
learning. We looked at the literature, identified the gaps, and proposed solutions to fill those gaps. Here
is a summary of the thesis.

In Chapter 2, we look at existing third-person datasets for procedure learning and highlight their
shortcomings. We highlight the efficacy of first-person videos and propose the EgoProceL dataset to
circumvent the shortcomings. Furthermore, we describe various protocols and annotation techniques
followed to create the dataset. Finally, we provide various statistics to provide a deeper insight into the
dataset and highlight its utility for procedure learning and other computer vision tasks.

In Chapter 3, we highlight the challenges posed by first-person videos for procedure learning and
why previous approaches will fall short of performing them. To overcome the challenges, we propose to
use the signal provided by the temporal correspondences between key-steps across videos. To this end,
we propose the Correspond and Cut (CnC) framework consisting of TC3I loss to learn the embedding
space and the ProCut Module (PCM) to identify and cluster the key-steps. Our results on the ProceL
and CrossTask datasets highlight the efficacy of using correspondences over state-of-the-art techniques.
Furthermore, we demonstrate the efficacy of using the egocentric view for procedure learning.

In Chapter 4, contrary to previous works that generate the learning signal from one or two videos,
we focus on creating a representation capable of uniting all the videos of the same task. To this end, we
propose the Graph-based Procedure Learning (GPL) framework. GPL consists of UnityGraph, which
creates a unified representation for multiple videos of the same task. Due to this, UnityGraph allows
the modelling of both temporal and spatial information. Furthermore, we perform an extensive abla-
tion study on various hyper-parameters for UnityGraph and report state-of-the-art results on ProceL,
CrossTask, and EgoProceL.

To conclude, in this thesis, we highlight multiple shortcomings of existing works and propose var-
ious approaches to overcome them. We hope this work will motivate future egocentric vision-based
procedure learning research. Also, we are excited to see more un-/self-supervised approaches to tackle
procedure learning.

47

Related Publications

• My View is The Best View: Procedure Learning from Egocentric Videos, Siddhant Bansal,
Chetan Arora, C.V. Jawahar. In IEEE/CVF European Conference on Computer Vision (ECCV)
2022.

• United We Stand, Divided We Fall: UnityGraph for Unsupervised Procedure Learning from
Videos, Siddhant Bansal, Chetan Arora, C.V. Jawahar. In IEEE/CVF Winter Conference on Ap-
plications of Computer Vision (WACV) 2024.

Other publications:

• Ego4D: Around the World in 3,000 Hours of Egocentric Video, Kristen Grauman, Andrew
Westbury, Eugene Byrne, Zachary Chavis, Antonino Furnari, Rohit Girdhar, Jackson Hamburger,
Hao Jiang, Miao Liu, Xingyu Liu, Miguel Martin, Tushar Nagarajan, Ilija Radosavovic, San-
thosh Kumar Ramakrishnan, Fiona Ryan, Jayant Sharma, Michael Wray, Mengmeng Xu, Eric
Zhongcong Xu, Chen Zhao, Siddhant Bansal, Dhruv Batra, Vincent Cartillier, Sean Crane, Tien
Do, Morrie Doulaty, Akshay Erapalli, Christoph Feichtenhofer, Adriano Fragomeni, Qichen Fu,
Christian Fuegen, Abrham Gebreselasie, Cristina Gonzalez, James Hillis, Xuhua Huang, Yifei
Huang, Wenqi Jia, Weslie Khoo, Jachym Kolar, Satwik Kottur, Anurag Kumar, Federico Landini,
Chao Li, Yanghao Li, Zhenqiang Li, Karttikeya Mangalam, Raghava Modhugu, Jonathan Munro,
Tullie Murrell, Takumi Nishiyasu, Will Price, Paola Ruiz Puentes, Merey Ramazanova, Leda Sari,
Kiran Somasundaram, Audrey Southerland, Yusuke Sugano, Ruijie Tao, Minh Vo, Yuchen Wang,
Xindi Wu, Takuma Yagi, Yunyi Zhu, Pablo Arbelaez, David Crandall, Dima Damen, Giovanni
Maria Farinella, Bernard Ghanem, Vamsi Krishna Ithapu, C. V. Jawahar, Hanbyul Joo, Kris Ki-
tani, Haizhou Li, Richard Newcombe, Aude Oliva, Hyun Soo Park, James M. Rehg, Yoichi Sato,
Jianbo Shi, Mike Zheng Shou, Antonio Torralba, Lorenzo Torresani, Mingfei Yan, Jitendra Malik.
In Conference on Computer Vision and Pattern Recognition (CVPR) 2022.

• Improving Word Recognition using Multiple Hypotheses and Deep Embeddings, Siddhant
Bansal, Praveen Krishnan, C.V. Jawahar. In International Conference on Pattern Recognition
(ICPR), 2021.

48

• Fused Text Recogniser and Deep Embeddings Improve Word Recognition and Retrieval,
Siddhant Bansal, Praveen Krishnan, C.V. Jawahar. In IAPR International Workshop on Document
Analysis and System (DAS), 2020.

49

Bibliography

[1] U. Ahsan, C. Sun, and I. Essa. DiscrimNet: Semi-Supervised Action Recognition from Videos using Gen-

erative Adversarial Networks. In Computer Vision and Pattern Recognition Workshops (CVPRW) ‘Women

in Computer Vision (WiCV)’, 2018.

[2] J.-B. Alayrac, P. Bojanowski, N. Agrawal, I. Laptev, J. Sivic, and S. Lacoste-Julien. Unsupervised learning

from Narrated Instruction Videos. In Computer Vision and Pattern Recognition (CVPR), 2016.

[3] S. Bansal, C. Arora, and C. Jawahar. My View is the Best View: Procedure Learning from Egocentric

Videos. In European Conference on Computer Vision (ECCV), 2022.

[4] P. Bojanowski, R. Lajugie, F. Bach, I. Laptev, J. Ponce, C. Schmid, and J. Sivic. Weakly Supervised Action

Labeling in Videos under Ordering Constraints. In European Conference on Computer Vision (ECCV),

2014.

[5] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimization via graph cuts. IEEE Transac-

tions on Pattern Analysis and Machine Intelligence, 2001.

[6] F. M. Carlucci, A. D’Innocente, S. Bucci, B. Caputo, and T. Tommasi. Domain Generalization by Solving

Jigsaw Puzzles. In Computer Vision and Pattern Recognition (CVPR), 2019.

[7] J. Carreira and A. Zisserman. Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset. In

Computer Vision and Pattern Recognition (CVPR), 2017.

[8] C.-Y. Chang, D.-A. Huang, Y. Sui, L. Fei-Fei, and J. C. Niebles. D3TW: Discriminative Differentiable

Dynamic Time Warping for Weakly Supervised Action Alignment and Segmentation. In Computer Vision

and Pattern Recognition (CVPR), 2019.

[9] R. W. Conners and C. A. Harlow. A Theoretical Comparison of Texture Algorithms. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 1980.

[10] D. Damen, H. Doughty, G. M. Farinella, S. Fidler, A. Furnari, E. Kazakos, D. Moltisanti, J. Munro, T. Per-

rett, W. Price, and M. Wray. Scaling Egocentric Vision: The EPIC-KITCHENS Dataset. In European

Conference on Computer Vision (ECCV), 2018.

[11] D. Damen, T. Leelasawassuk, O. Haines, A. Calway, and W. Mayol-Cuevas. You-Do, I-Learn: Discovering

Task Relevant Objects and their Modes of Interaction from Multi-User Egocentric Video. In British Machine

Vision Conference (BMVC), 2014.

50

[12] F. De La Torre, J. Hodgins, A. Bargteil, X. Martin, J. Macey, A. Collado, and P. Beltran. Guide to the

Carnegie Mellon University Multimodal Activity (CMU-MMAC) database. In Robotics Institute, 2008.

[13] A. Diba, V. Sharma, L. Gool, and R. Stiefelhagen. DynamoNet: Dynamic Action and Motion Network. In

International Conference on Computer Vision (ICCV), 2019.

[14] L. Ding and C. Xu. Weakly-supervised action segmentation with iterative soft boundary assignment. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018.

[15] L. Ding and C. Xu. Weakly-Supervised Action Segmentation with Iterative Soft Boundary Assignment. In

Computer Vision and Pattern Recognition (CVPR), 2018.

[16] H. Doughty, I. Laptev, W. Mayol-Cuevas, and D. Damen. Action Modifiers: Learning From Adverbs in

Instructional Videos. In Computer Vision and Pattern Recognition (CVPR), 2020.

[17] J. C. Dunn. A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-Separated

Clusters. Journal of Cybernetics, 1973.

[18] D. Dwibedi, Y. Aytar, J. Tompson, P. Sermanet, and A. Zisserman. Temporal Cycle-Consistency Learning.

In Computer Vision and Pattern Recognition (CVPR), 2019.

[19] E. Elhamifar and D. Huynh. Self-supervised Multi-task Procedure Learning from Instructional Videos. In

European Conference on Computer Vision (ECCV), 2020.

[20] E. Elhamifar and Z. Naing. Unsupervised Procedure Learning via Joint Dynamic Summarization. In Inter-

national Conference on Computer Vision (ICCV), 2019.

[21] K. G. et al. Ego4D: Around the World in 3,000 Hours of Egocentric Video, 2021.

[22] Z. Feng, C. Xu, and D. Tao. Self-Supervised Representation Learning by Rotation Feature Decoupling. In

Computer Vision and Pattern Recognition (CVPR), 2019.

[23] B. Fernando, H. Bilen, E. Gavves, and S. Gould. Self-Supervised Video Representation Learning with

Odd-One-Out Networks. In Computer Vision and Pattern Recognition (CVPR), 2017.

[24] D. Fried, J.-B. Alayrac, P. Blunsom, C. Dyer, S. Clark, and A. Nematzadeh. Learning to Segment Actions

from Observation and Narration. In Association for Computational Linguistics (ACL), 2020.

[25] A. Furnari and G. Farinella. Rolling-Unrolling LSTMs for Action Anticipation from First-Person Video.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020.

[26] D. Greig, B. Porteous, and A. Seheult. Exact Maximum A Posteriori Estimation for Binary Images. Journal

of the Royal Statistical Society Series B-Methodology, 1989.

[27] A. Grover and J. Leskovec. node2vec: Scalable Feature Learning for Networks. In Proceedings of the 22nd

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016.

[28] A. A. Hagberg, D. A. Schult, and P. J. Swart. Exploring Network Structure, Dynamics, and Function using

NetworkX. In Proceedings of the 7th Python in Science Conference, 2008.

[29] T. Han, W. Xie, and A. Zisserman. Video Representation Learning by Dense Predictive Coding. In Workshop

on Large Scale Holistic Video Understanding, ICCV, 2019.

51

[30] S. Haresh, S. Kumar, H. Coskun, S. N. Syed, A. Konin, Z. Zia, and Q.-H. Tran. Learning by Aligning

Videos in Time. In Computer Vision and Pattern Recognition (CVPR), 2021.

[31] K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual Learning for Image Recognition. In Computer Vision

and Pattern Recognition (CVPR), 2016.

[32] G. E. Hinton and R. S. Zemel. Autoencoders, Minimum Description Length and Helmholtz Free Energy.

In Neural Information Processing Systems, 1993.

[33] D.-A. Huang, L. Fei-Fei, and J. C. Niebles. Connectionist Temporal Modeling for Weakly Supervised

Action Labeling. In European Conference on Computer Vision (ECCV), 2016.

[34] Y. Huang, M. Cai, Z. Li, and Y. Sato. Predicting gaze in egocentric video by learning task-dependent

attention transition. In European Conference on Computer Vision (ECCV), 2018.

[35] Y. Huang, Y. Sugano, and Y. Sato. Improving action segmentation via graph-based temporal reasoning. In

IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2020.

[36] Y. Jang, B. Sullivan, C. Ludwig, I. Gilchrist, D. Damen, and W. Mayol-Cuevas. EPIC-Tent: An Egocen-

tric Video Dataset for Camping Tent Assembly. In International Conference on Computer Vision (ICCV)

Workshops, 2019.

[37] L. Ji, C. Wu, D. Zhou, K. Yan, E. Cui, X. Chen, and N. Duan. Learning Temporal Video Procedure

Segmentation From an Automatically Collected Large Dataset. In Proceedings of the IEEE/CVF Winter

Conference on Applications of Computer Vision (WACV), 2022.

[38] D. Kim, D. Cho, and I.-S. Kweon. Self-Supervised Video Representation Learning with Space-Time Cubic

Puzzles. In AAAI Conference on Artificial Intelligence, 2019.

[39] D. Kim, D. Cho, D. Yoo, and I.-S. Kweon. Learning Image Representations by Completing Damaged

Jigsaw Puzzles. In Winter Conference on Applications of Computer Vision (WACV), 2018.

[40] D. P. Kingma and J. Ba. Adam: A Method for Stochastic Optimization. In International Conference on

Learning Representations, (ICLR), 2015.

[41] N. Komodakis and S. Gidaris. Unsupervised representation learning by predicting image rotations. In

International Conference on Learning Representations (ICLR), 2018.

[42] H. Kuehne, A. B. Arslan, and T. Serre. The language of actions: Recovering the syntax and semantics of

goal-directed human activities. In Computer Vision and Pattern Recognition (CVPR), 2016.

[43] H. W. Kuhn. The Hungarian method for the assignment problem. Naval Research Logistics Quarterly,

1955.

[44] A. Kukleva, H. Kuehne, F. Sener, and J. Gall. Unsupervised learning of action classes with continuous

temporal embedding. In Computer Vision and Pattern Recognition (CVPR), 2019.

[45] G. Larsson, M. Maire, and G. Shakhnarovich. Learning Representations for Automatic Colorization. In

European Conference on Computer Vision (ECCV), 2016.

[46] G. Larsson, M. Maire, and G. Shakhnarovich. Colorization as a Proxy Task for Visual Understanding. In

Computer Vision and Pattern Recognition (CVPR), 2017.

52

[47] H.-Y. Lee, J.-B. Huang, M. K. Singh, and M.-H. Yang. Unsupervised Representation Learning by Sorting

Sequences. In International Conference on Computer Vision (ICCV), 2017.

[48] J. Li, P. Lei, and S. Todorovic. Weakly Supervised Energy-Based Learning for Action Segmentation. In

International Conference on Computer Vision (ICCV), 2019.

[49] J. Li and S. Todorovic. Set-Constrained Viterbi for Set-Supervised Action Segmentation. In Computer

Vision and Pattern Recognition (CVPR), 2020.

[50] Y. Li, A. Fathi, and J. M. Rehg. Learning to Predict Gaze in Egocentric Video. In International Conference

on Computer Vision (ICCV), 2013.

[51] Y. Li, M. Liu, and J. M. Rehg. In the Eye of Beholder: Joint Learning of Gaze and Actions in First Person

Video. In European Conference on Computer Vision (ECCV), 2018.

[52] X. Liu, J. van de Weijer, and A. D. Bagdanov. Leveraging Unlabeled Data for Crowd Counting by Learning

to Rank. In Computer Vision and Pattern Recognition (CVPR), 2018.

[53] S. Lloyd. Least squares quantization in PCM. IEEE Transactions on Information Theory, 1982.

[54] J. Malmaud, J. Huang, V. Rathod, N. Johnston, A. Rabinovich, and K. Murphy. What’s Cookin’? Interpret-

ing Cooking Videos using Text, Speech and Vision. In HLT-NAACL, 2015.

[55] A. Miech, D. Zhukov, J.-B. Alayrac, M. Tapaswi, I. Laptev, and J. Sivic. HowTo100M: Learning a Text-

Video Embedding by Watching Hundred Million Narrated Video Clips. In International Conference on

Computer Vision (ICCV), 2019.

[56] I. Misra, C. L. Zitnick, and M. Hebert. Shuffle and Learn: Unsupervised Learning Using Temporal Order

Verification. In European Conference on Computer Vision (ECCV), 2016.

[57] Z. Naing and E. Elhamifar. Procedure Completion by Learning from Partial Summaries. In British Machine

Vision Conference (BMVC), 2020.

[58] E. Ng, D. Xiang, H. Joo, and K. Grauman. You2Me: Inferring Body Pose in Egocentric Video via First and

Second Person Interactions. In Computer Vision and Pattern Recognition (CVPR), 2020.

[59] M. Noroozi, H. Pirsiavash, and P. Favaro. Representation Learning by Learning to Count. In International

Conference on Computer Vision (ICCV), 2017.

[60] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,

L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,

L. Fang, J. Bai, and S. Chintala. PyTorch: An Imperative Style, High-Performance Deep Learning Library.

In Neural Information Processing Systems, 2019.

[61] H. Pirsiavash and D. Ramanan. Detecting activities of daily living in first-person camera views. In Computer

Vision and Pattern Recognition (CVPR), 2012.

[62] F. Ragusa, A. Furnari, S. Livatino, and G. M. Farinella. The MECCANO Dataset: Understanding Human-

Object Interactions From Egocentric Videos in an Industrial-Like Domain. In Winter Conference on Appli-

cations of Computer Vision (WACV), pages 1569–1578, 2021.

53

[63] A. Richard, H. Kuehne, and J. Gall. Action Sets: Weakly Supervised Action Segmentation Without Ordering

Constraints. In Computer Vision and Pattern Recognition (CVPR), 2018.

[64] A. Richard, H. Kuehne, A. Iqbal, and J. Gall. NeuralNetwork-Viterbi: A Framework for Weakly Supervised

Video Learning. In Computer Vision and Pattern Recognition (CVPR), 2018.

[65] F. Sener and A. Yao. Zero-Shot Anticipation for Instructional Activities. In International Conference on

Computer Vision (ICCV), 2019.

[66] O. Sener, A. R. Zamir, S. Savarese, and A. Saxena. Unsupervised Semantic Parsing of Video Collections.

In International Conference on Computer Vision (ICCV), 2015.

[67] D. Shan, J. Geng, M. Shu, and D. Fouhey. Understanding human hands in contact at internet scale. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020.

[68] Y. Shen, L. Wang, and E. Elhamifar. Learning To Segment Actions From Visual and Language Instructions

via Differentiable Weak Sequence Alignment. In Computer Vision and Pattern Recognition (CVPR), 2021.

[69] G. A. Sigurdsson, A. Gupta, C. Schmid, A. Farhadi, and K. Alahari. Actor and Observer: Joint Modeling

of First and Third-Person Videos. In Computer Vision and Pattern Recognition (CVPR), 2018.

[70] S. Singh, C. Arora, and C. V. Jawahar. First Person Action Recognition Using Deep Learned Descriptors.

In Computer Vision and Pattern Recognition (CVPR), 2016.

[71] E. V. . C. software]. (2020). Nijmegen: Max Planck Institute for Psycholinguistics, The Language Archive.

Retrieved from https://archive.mpi.nl/tla/elan.

[72] N. Srivastava, E. Mansimov, and R. Salakhutdinov. Unsupervised Learning of Video Representations Using

LSTMs. In International Conference on Machine Learning (ICML), 2015.

[73] Y. Tang, D. Ding, Y. Rao, Y. Zheng, D. Zhang, L. Zhao, J. Lu, and J. Zhou. COIN: A Large-Scale Dataset

for Comprehensive Instructional Video Analysis. In Computer Vision and Pattern Recognition (CVPR),

2019.

[74] D. Tran, L. D. Bourdev, R. Fergus, L. Torresani, and M. Paluri. Learning Spatiotemporal Features with 3D

Convolutional Networks. In International Conference on Computer Vision (ICCV), 2015.

[75] D. Tran, H. Wang, L. Torresani, J. Ray, Y. LeCun, and M. Paluri. A Closer Look at Spatiotemporal Convo-

lutions for Action Recognition. In Computer Vision and Pattern Recognition (CVPR), 2018.

[76] L. van der Maaten and G. Hinton. Visualizing Data using t-SNE. Journal of Machine Learning Research,

2008.

[77] R. G. VidalMata, W. J. Scheirer, A. Kukleva, D. Cox, and H. Kuehne. Joint Visual-Temporal Embedding

for Unsupervised Learning of Actions in Untrimmed Sequences. In Proceedings of the IEEE/CVF Winter

Conference on Applications of Computer Vision (WACV), 2021.

[78] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol. Extracting and Composing Robust Features with

Denoising Autoencoders. In International Conference on Machine Learning (ICML), 2008.

[79] C. Vondrick, H. Pirsiavash, and A. Torralba. Generating Videos with Scene Dynamics. In Neural Informa-

tion Processing Systems, 2016.

54

[80] X. Wang, R. B. Girshick, A. Gupta, and K. He. Non-local Neural Networks. In Computer Vision and Pattern

Recognition (CVPR), 2018.

[81] D. Wei, J. Lim, A. Zisserman, and W. T. Freeman. Learning and Using the Arrow of Time. In Computer

Vision and Pattern Recognition (CVPR), 2018.

[82] J. woo Choi, G. Sharma, S. Schulter, and J.-B. Huang. Shuffle and Attend: Video Domain Adaptation. In

European Conference on Computer Vision (ECCV), 2020.

[83] D. Xu, J. Xiao, Z. Zhao, J. Shao, D. Xie, and Y. Zhuang. Self-Supervised Spatiotemporal Learning via

Video Clip Order Prediction. In Computer Vision and Pattern Recognition (CVPR), 2019.

[84] S.-I. Yu, L. Jiang, and A. Hauptmann. Instructional Videos for Unsupervised Harvesting and Learning of

Action Examples. In ACM International Conference on Multimedia, 2014.

[85] L. Zhou, C. Xu, and J. J. Corso. Towards Automatic Learning of Procedures From Web Instructional Videos.

In AAAI Conference on Artificial Intelligence, 2018.

[86] D. Zhukov, J.-B. Alayrac, R. G. Cinbis, D. Fouhey, I. Laptev, and J. Sivic. Cross-task weakly supervised

learning from instructional videos. In Computer Vision and Pattern Recognition (CVPR), 2019.

[87] D. Zhukov, J.-B. Alayrac, I. Laptev, and J. Sivic. Learning Actionness via Long-range Temporal Order

Verification. In European Conference on Computer Vision (ECCV), 2020.

55

	Procedure Learning: Motivation, Challenges, and Prior Attempts
	What is Procedure Learning?
	Why is it Difficult to Learn Procedures?
	How is Procedure Learning Different from other Tasks?
	Contributions

	Previous Attempts to Learn Procedures
	Representation Learning for Procedure Learning
	Multimodal Procedure Learning
	Self-Supervised Representation Learning
	Learning Key-step Ordering

	Organization of the Thesis

	The EgoProceL Dataset: Egocentric Videos for Procedure Learning
	Existing Datasets for Procedure Learning
	Third-Person Procedure Learning Datasets
	Issues with Third-person Datasets and How to Overcome them

	EgoProceL Dataset for Procedure Learning
	Collecting EgoProceL's videos
	Protocol for selecting videos from existing Egocentric Datasets
	Datasets not included in EgoProceL
	Capturing Novel Tasks

	Annotating EgoProceL
	Task-level details of EgoProceL
	Foreground Ratio
	Missing Key-steps
	Repeated Key-steps

	Summary

	Aligning the Videos for Discovering the Procedure
	The Motivation behind Aligning the Videos
	Correspond and Cut framework for Procedure Learning
	TC3I Loss for Learning the Embeddings
	ProCut Module for Learning the Key-steps
	Determining Order of the Key-steps

	Experiments
	An Updated Evaluation Protocol
	Implementation Details
	List of Hyper-parameters

	Baselines

	Results
	Third-person Videos
	Egocentric Videos
	Egocentric vs. Third-person Videos

	Ablation Study
	Effectiveness of the TC3I Loss
	Effectiveness of PCM
	Selecting the value of K

	Summary

	Graphs for Procedure Learning
	The Motivation behind Utilizing Graphs
	Graph-based Procedure Learning (GPL)
	Representing Videos using UnityGraph
	Creating UnityGraph's Nodes and Edges
	Detecting the Background Frames

	Identifying Key-steps and their Order
	Updating and Clustering UnityGraph's Embeddings
	Identifying the Order of Key-steps

	Experiments
	Evaluation
	Implementation Details
	Datasets
	Baselines

	Results
	Third-person Videos
	Egocentric Videos
	Qualitative Analysis

	Ablation Study
	Creating UnityGraph
	Learning and Clustering the Embeddings
	Number of Key-steps and Background Frames
	Number of Videos for Creating UnityGraph

	Summary

	Conclusion
	Bibliography

