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Abstract

Current ameliorations in Evolutionary Strategies
have allowed us to achieve phenomenal accuracy
in variants of optimization problems. However, for
the layout optimization problem, there doesn’t exist
a platform adept enough to challenge off-the-shelf
algorithms to the fullest extent. For addressing the
mentioned problem statement, we introduce Evolu-
tionary Layout Optimization Playground and Eval-
uator (ELOPE), a platform for solving a large spec-
trum of layout optimization problems. ELOPE’s
purpose is to provide the community with the plat-
form required for understanding and evaluating al-
gorithms for solving the layout optimization prob-
lem. ELOPE’s major contributions are its proposed
2D rectangular representation for the environment,
multi-objective optimization, pre-defined plugins
for evolutionary algorithms and visualization of the
generated layouts. As an illustration, we optimize
the layout of an environment with various mod-
ules considering multiple constraints by employing
the genetic algorithm and the plugins available in
ELOPE.

1 Introduction
Platforms which make it easy to implement and evaluate algo-
rithms are very crucial in reducing friction while developing
solutions to the real-world problems. It also reduces the level
of expertise required to build solutions especially when there
are plethora of strategies being proposed in the field of Arti-
ficial Intelligence(AI). Such platforms tend to provide boiler-
plate code to the community leading to accelerated adaptation
of algorithms in applied sciences. The Arcade Learning Envi-
ronment(ALE) [Bellemare et al., 2013] facilitated the devel-
opment of learning algorithms by providing standard bench-
marks for evaluation and comparison. Open AI Gym [Brock-
man et al., 2016] has grown as a de-facto bench-marking
toolkit for reinforcement learning research. Eos [Bonsma
et al., 2000] supports rapid implementation of evolutionary
algorithms, ecosystem simulations and hybrid models, and
SPGAO [Liu, 2012] provides a simulation platform for the
genetic algorithm along with visualisation. But, there is no

platform that provides a base structure with plugins for solv-
ing the layout optimization problem using evolutionary algo-
rithms. ELOPE, is a platform for evaluating and comparing
different evolutionary algorithms for solving layout problems
using evolutionary algorithms.

These are the major contributions made in this paper:

• ELOPE provides a scalable playground as it can be
used to generate diverse set of layout customizations for
various applications.

• It provides a rich set of plugins that makes it easy to
use for developing various functionalities on the top of
it.

• It provides visualisation module which can be used to
visualise layouts generated by the algorithm.

The remainder portion of paper is organised as follows.
Section 2 describes the literature review for the problem state-
ment and solutions for the same. Section 3 contains the ar-
chitectural overview of the ELOPE. In Section 4, we have
explained possible interaction of ELOPE with any algorithm
by taking Genetic Algorithm as an example. Finally, we have
made conclusion in the Section 5 along with discussing future
possible contributions.

2 Related Work
Layout Optimisation Problem refers to the problem of deter-
mining positions of modules in a layout for optimizing multi-
ple constraint objectives specific to the problem statement.
The discussed problem statement can be divided into two
subdivisions as continuous layout optimization problem and
discrete layout optimization problem. Researchers like [Tam
and Li, 1991], [Van Camp et al., 1992] [Tam, 1992b], [Tam,
1992a] have contributed immensely for continuous layout op-
timisation problem, whereas [Armour and Buffa, 1963], [Lee,
1967], [Khalil, 1973] made numerous efforts for discrete lay-
out optimisation problem. Apart from mentioned categoriza-
tion, there are also additional possible ways of categorizing
Layout optimization problem as equal area problem, unequal
area problem [Lee et al., 2005], Quadratic Assignment Prob-
lem (QAP) and Quadratic Set Covering Problem (QSCP) [Ra-
jasekharan et al., 1998].

For solving the above mentioned problem scenarios, a wide
array of algorithms have been employed. genetic algorithms
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Figure 1: ELOPE’s architecture and interaction with the algorithm.

were used by [Rajasekharan et al., 1998] for flexible manu-
facturing system optimisation, genetic search by [Tate* and
Smith, 1995] for unequal-area facility layout optimization,
genetic programming by [Zheng et al., 2006] for Geometry
and sizing optimisation of discrete structure. This problem
statement has also been assessed by researchers from diverse
applied engineering fields. [Ismail et al., 2012] have explored
the same for optimizing placement of components on the PCB
using genetic algorithms. [Mohamed et al., 2015] have ana-
lyzed layout improvement for steel fabrication works.Though
community has explored the wide range of layout optimi-
sation problems and employed diverse strategies, it lacks a
playground which can be used as a standard tool for evalu-
ating the progress of the community. For the same purpose,
ELOPE aims to be the standard platform which can be used to
test and benchmark the evolutionary algorithms. [Hosseini-
Nasab et al., 2018] study that genetic algorithm is the most
used algorithm for solving the layout optimization problem,
this makes it obvious to equip ELOPE with plugins to support
the development of various variants of the genetic algorithm.
This paper also briefly explains using the genetic algorithm
with ELOPE plugins to solve a multi-objective layout opti-
misation problem.

3 ELOPE Architecture
The key idea for ELOPE is to avail the community with a
comprehensive platform for solving the layout optimisation
problems. Hence, in this section architecture of ELOPE is
discussed in detail. ELOPE is written in Python to avail the
implemented operations for matrix manipulation and its ma-
tured range of libraries for applied programming. This choice

also caters the developers to prototype the ideas relatively
faster and help direct the efforts on the algorithm than the
interfaces.

ELOPE stands out as a bridge between the problem state-
ment and the algorithm employed to solve it. Figure 1 illus-
trates that relationship via the user-defined data-flow origi-
nating from the problem statement at hand. The interactions
among the sub-modules of ELOPE and the optimization strat-
egy of choice are also represented. Furthermore, the section
describes each building block of ELOPE for the ease of de-
velopment.

3.1 Application specific configuration
The information corresponding to the layout being optimised
acts as an input for the ELOPE environment. This informa-
tion is represented in a configuration file consisting of fields
related to the physical floor-space, constraints and specifica-
tions about the components to be placed optimally in the lay-
out.

3.2 ELOPE
ELOPE represents the multi-floor space as a set of 3D grid
boxes, which behave as the fundamental cell. Each grid
box can be represented as Gx,y,z where x, y and z where
x ∈ {1, ..., X}, y ∈ {1, ..., Y } and z ∈ {1, ..., Z}. The X ,
Y and Z are the inputs derived from the application specific
configuration which denote the width, length and number of
floors respectively for the floor space. Each grid box acquires
a token value (g) from the grid token set (G).Here g ∈ G
where,

G = {−2,−1, 0,M}



where,
−2 represents blocked or unusable space
−1 represents vacant or usable space
0 represents the connections between modules
M represents module ID (explained later in this section)

Module
The physical components which are supposed to occupy the
floor-space or in other words whose positions are to be opti-
mized are addressed as module henceforth. The properties of
module (PM ) for single floor is represented as follows:

PM = {Mx,y,Mco,Md,Mui, l, w}

where,
Mx,y represents x, y coordinates of the module
Mco represents connectable grid boxes of the module
Md represents orientation direction of the module
Mui represents user block
l represents length of the module
w represents width of the module

Layout
In ELOPE, the floor space along with its modules is addressed
as the layout. Using the application specific configuration
file, ELOPE represents a single floor-space with a set of 2D
rectangular grid boxes. Further, the layout can contain m
number of modules of width wi and length li where i ∈
{1,......m}. So the number of modules contained in the en-
vironment should satisfy the following condition:

m∑
i=1

(wi × li) ≤ (X × Y ) (1)

ELOPE Configuration
The inputs from the application specific configuration file are
inherently used by ELOPE in two contexts to generate the
complete layout. They are identified as specifications or con-
straints pertaining to the Module or Layout.

Layout Generator
The Layout Generator is responsible for generating layouts
by placing each module as per the user defined strategies. The
layout is generated considering the layout specific configura-
tion parameters. Most of the evolutionary approaches place
the modules at random location within the layout. Hence
the add module functionality facilitates the placement by de-
fault at random locations considering the specifications and
constraints from respective configuration parameters for the
module. Figure 2 illustrates the sample from layout genera-
tor.

Constraint Enforcement
The ELOPE configuration file generates constraint enforce-
ment which acts as an input for layout generator. Constraint
enforcement can be categorized as general layout constraints
and application layout constraints. Constraints are defined
using the information from grid token set G. For example,

Figure 2: The internal representation of the layout is demonstrated.
The empty space is represented with -1 and the highlighted portion
in red represents the modules with their unique module ids(M ).

[(3,3,1) ,(1,1,2), (5,1,3),(4,4,4)]

Figure 3: The modules represented with ids 1 and 4 can be eas-
ily identified using a 2D rectangular matrix. Whereas, vectors are
represented as a list of tuples. Each tuple shows the x-coordinates,
y-coordinates of the module and module id respectively. So, visual-
ization using 2D matrix is very effective as compared to a vectored
representation.

general layout constraints includes layouts containing non-
overlapping modules, modules that should be represented
within the boundary of layout whereas application specific
constraints includes constraints such as user accessibility con-
straint, blockage constraint and module adjacency constraint.

Plugins
ELOPE’s plugins are divided into 3 major categories:

1. Module manipulation plugin: This set of plugin is
used to move the modules within the layout. They
include:

Shift Plugin: This plugin takes in the module id
and shifts that particular module by n position in the
given direction. Mathematical formulation of shift
plugin is as follows:
For right/left shift:

(c′, d′) = (c, d± n)

For top/down shift:

(c′, d′) = (c± n, d)

where,

c, c′ represents the previous and new top left corner’s



row position respectively
d, d′ represents the previous and new top left corner’s

column position respectively
n represents number of blocks to move

Rotate Plugin: This plugin takes in the module id and
rotates the module by 90 or 180 degrees, if and only if
there is sufficient space to rotate the module.

2. Layout manipulation plugin This set of plugin modi-
fies the layout as a whole. Geometric transformations
applied on the layout can be included in this category.

3. Layout assessment plugin These plugins are used for
assigning a score to the layout by assessing various
parameters of the layout. ELOPE is equipped with
various plugins like Euclidean distance, Manhattan
distance, minimal path plugin and minimal area plugin.
What follows is mathematical description of minimal
area and minimal path plugins.

Minimal path plugin: The lowest length of connecting
path between 2 modules is the number of minimum steps
required to move from module i to module j represented
as pi,j . The overall path length among the modules is
represented as pl which is calculated as follows:

pl =

n∑
i,j=1,j 6=i

pi,j (2)

Minimal area plugin: The minimal effective area cov-
ered by the modules is calculated as follows:

am = (xmax − xmin)× (ymax − ymin) (3)

where,

am represents overall area occupied by the
modules

xmax, xmin represents the maximum and minimum
x-coordinates of the module respectively

ymax, ymin represents the maximum and minimum
y-coordinates of the module respectively

To bring above objectives on the small scale and giving
equal weight to all the objectives, we do normalization:

pn =
(pl − pmin)

(pmax − pmin)
(4)

where,

pn represents the normalized path
pl represents overall path length
pmin represents minimum path length between

modules
pmax represents perimeter of the layout

an =
(am − amin)

(amax − amin)
(5)

where,

an represents the normalized area
am represents overall area occupied by the

modules
amin represents sum of area of all the modules
amax represents area of the layout

Visualization Module: The layout that is internally repre-
sented as a Numpy array is not a good way when it comes
to visualizing the layout. This is the reason ELOPE comes
with a visualization module for converting all the informa-
tion from the Numpy array to a form that can be easily un-
derstood and visualized. Figure 4 shows the layout generated
using Visualization Module.

Main Layout Delete Module 

Shift Module
Upwards

Rotate
Module

Figure 4: The internal representation of the layout is converted to
the form which is convenient for visualization. Demonstration of
how main layout looks after applying shift, delete and rotate plugin
is shown.

3.3 Algorithm
Paradigm of any search algorithm can be represented as 2
block entity, Adaptation From Current State and Evaluation
of Adapted State. In figure 1, we have tried to explain how
any generic search algorithm can be represented and in the
figure 5 we have explained how blocks of any search algo-
rithm can interact with ELOPE’s modules by considering ge-
netic algorithm as an example.

4 Locus Classicus
What follows is a case study representation of layout opti-
mization problem statement, where we have exemplified lay-
out optimization in an industrial warehouse environment and
provided an experimental analysis of solution using the ge-
netic algorithm. In this section, we have demonstrated how
functionalities and plugins of ELOPE can be used as higher
level building blocks for constructing various subdivisions of
the algorithm.

4.1 Constraint Overview
Constraints are essential part of any search optimization prob-
lem as it curtails search space to a considerable amount. Any



search algorithm adapts the state of the search space such
that exploration and exploitation are balanced while the con-
straints are fulfilled simultaneously. In the ELOPE, for facil-
itating a diverse variety of constraints, they have been classi-
fied into two possible approaches. 1) Constraint guided state
adaptation: These set of constraints guide the algorithm in
the process of state formation. 2) Constraint satisfied state
adaptation: These set of constraints evaluate the state after
it’s creation.

In this implementation, three constraints were defined,
1. User accessibility constraint: For module with ID M

user box is defined as Mui,uj where i, j are the coor-
dinates of the user blocks in Gi,j where i ∈ {1, ..., X}
and j ∈ {1, ..., Y }.
Mui+n,uj+n = −1 is the condition for constraint satis-
faction. Where,
n is the minimum distance for user accessibility. This
constraint is considered under guided state adaptation
category.

2. Blockage constraint: This constraint defines the grid
boxes which are unusable. Gi,j = −2 is the condition
for constraint satisfaction. This constraint is considered
under satisfaction state adaptation category.

3. Module adjacency constraint: This constraint allows to
keep some reserved space around any given side of the
module. For example, a module with module ID M
needs a grid blocks towards the left side. Then

Mx,y+l+a−Mx,y+a : Mx+l+a,y+l+a−Mx+l,y+l = −1

is the constraint that needs to be satisfied.
This constraint is considered under guided state adapta-
tion category.

4.2 Optimization Objective
For the expounded problem statement of industrial warehouse
layout optimization, we want to optimize the machinic mod-
ule configuration for facilitating the lowest length of conveyor
and minimize the effective area covered by the modules. For
calculating optimization objective mentioned, we are using
ELOPE plugins for minimal path and area calculations. We
are getting scores pn and an as defined in equations 4 and 5
respectively from the plugins and calculating overall score as
mentioned below.

The objective function considering above normalized val-
ues is:

Obf =
1

(pn + an)
(6)

where,
Obf represents the objective function

4.3 Genetic Algorithm and Implementation
The genetic algorithm is a type of evolutionary algorithm that
tries to mimic the actual biological process in a hope of dis-
covering good solutions which was first introduced by [Hol-
land and others, 1992]. The genetic algorithm is analogous

to Darwinian natural mutation and selection, it is a part of
‘randomized heuristics’ which does not depend on the prior
knowledge of various features of the domain whereas it de-
pends on the randomized choice of operators.

Algorithm 1 Genetic Algorithm
Input: desired score, maximum number of generations
Parameter: Fitness strategy

1: Initialize initial population
2: Set population score to zero
3: Set generation number to zero
4: while population score<desired score or generation

number<maximum generations do
5: Get sorted population, population score and best indi-

vidual score
6: Perform selection
7: Perform crossover
8: Sort population
9: Perform mutation

10: Increment generation number
11: end while

Specifically, for solving this problem statement using ge-
netic algorithm we have developed various plugins, they are
as follows:

1. Initial population generator: This plugin takes in a
number of individuals in the initial population (Step 1
in Algorithm 1), and simply generates that many indi-
viduals using individual generator. The user can easily
add some special individuals that it wishes to be a part
of the initial population. Population is represented as
P = {L0, L1, ..., Ln} where, n is number of individuals
in the population.

2. Fitness strategies: There are various fitness strategies
that are used for getting fitness value for various con-
straints (Step 5 in Algorithm 1). As defined in section
’n’ we are using the fitness strategies in the following
manner. Fitness is calculated as Fp = {SLi

} where,
SLi = f(Li) here i = 0, ..., n.

3. Crossover strategies: Crossover is used for exploring
the sample space in the Genetic Algorithm (Step 7 in
Algorithm 1), we implement 2 different strategies in our
plugin, they are as follows:

(a) In the most basic strategy, we choose any envi-
ronment at random and take the module’s position
from it for creating a new environment. If there
is any conflict in creating the environment then a
completely new environment is used as a child.

(b) The second strategy involves using the fitness score
of the environment. The environment with a higher
score is given an 80% probability of contributing
in the crossover process, whereas the one with the
lower score is given the remaining 20% probability.

For old population P , new population P ′ is generated as
P ′ = C(P ) where C is crossover function.



4. Mutation strategies: Mutation is used for exploiting the
sample space in the Genetic Algorithm (Step 9 in Al-
gorithm 1), we implement 3 different strategies in our
plugin, they are as follows:
(a) Shift mutation: This strategy involves moving the

module up, down, right or left by n number of
blocks.

(b) Tilt mutation: This strategy involves rotating the
module by 180 degrees.

(c) Rotate mutation: This strategy involves rotating
the module by 90 degrees.

5. Selection strategy: This plugin is used for selecting in-
dividuals for the next generation. Every alternate envi-
ronment is chosen from the entire population and these
selected individuals take part in the selection process.
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Figure 5: The use of ELOPE to develop genetic algorithm is demon-
strated. The mapping of different strategies of genetic algorithm is
shown with the corresponding modules of ELOPE used.

All these plugins of the genetic algorithm are developed
using ELOPE. As shown in Figure 5, generate population is
build using ELOPE’s Layout Generator, crossover and mu-
tation is build using module and layout manipulation plu-
gin, whereas selection and fitness strategy is developed using
constraint enforcement and layout assessment plugin. This
demonstrates the purpose of ELOPE in developing different
algorithms.

4.4 Results
For getting an optimized industrial warehouse environment
the algorithm was made to evolve until the desired score was
achieved. In Figure 6, the tracks of the conveyor are repre-
sented between the modules. Clearly, in Figure 6 (a) the con-
veyor length is higher than as shown in Figure 6 (b) and also
the area occupied by the modules and conveyor is reduced
to a certain extent. Overall we get an optimized layout after
evolving for 160 generations through the genetic algorithm.

5 Conclusion and Future Work
This paper has revealed the design policies of ELOPE and
its suitability to the optimization process using evolutionary

(a) (b)

(c) (d)
Best Individual Generation Number Generation Number

Sc
or

e

Individual score trend Generation score trend
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Figure 6: (a) shows the initial layout where modules are placed
randomly, (b) shows the optimized layout evolved after 160 gen-
erations, (c) represents the best layout score and (d) represents the
overall generation score.

algorithms. ELOPE can be elegantly used as a playground
for developing, understanding and evaluating not just evolu-
tionary algorithms but also Reinforcement Learning (RL) and
other search optimization techniques. ELOPE in its future
version aims to support various nuances of layout optimisa-
tion problems along with 3D visualisation modules. ELOPE
also needs a standard leaderboard for these environments in
maintaining the community’s progress.
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